Identifier
            
            - 
Mp00154:
    Graphs
    
—core⟶
Graphs
		
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
St000755: Integer partitions ⟶ ℤ 
                Values
            
            ([(0,1)],2) => ([(0,1)],2) => [1] => 1
([(1,2)],3) => ([(0,1)],2) => [1] => 1
([(0,2),(1,2)],3) => ([(0,1)],2) => [1] => 1
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(2,3)],4) => ([(0,1)],2) => [1] => 1
([(1,3),(2,3)],4) => ([(0,1)],2) => [1] => 1
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => [1] => 1
([(0,3),(1,2)],4) => ([(0,1)],2) => [1] => 1
([(0,3),(1,2),(2,3)],4) => ([(0,1)],2) => [1] => 1
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => [1] => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 2
([(3,4)],5) => ([(0,1)],2) => [1] => 1
([(2,4),(3,4)],5) => ([(0,1)],2) => [1] => 1
([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => [1] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => [1] => 1
([(1,4),(2,3)],5) => ([(0,1)],2) => [1] => 1
([(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => [1] => 1
([(0,1),(2,4),(3,4)],5) => ([(0,1)],2) => [1] => 1
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => [1] => 1
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => [1] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1)],2) => [1] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => [1] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1)],2) => [1] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 2
([(4,5)],6) => ([(0,1)],2) => [1] => 1
([(3,5),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(2,5),(3,4)],6) => ([(0,1)],2) => [1] => 1
([(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(1,2),(3,5),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [1] => 1
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,1)],2) => [1] => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [1] => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [1] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [1] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [1] => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,4),(2,3)],6) => ([(0,1)],2) => [1] => 1
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,1)],2) => [1] => 1
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => [1] => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 1
>>> Load all 201 entries. <<<
                    
                        
                search for individual values
                        
            
                            searching the database for the individual values of this statistic
                        
                    
                    
                Description
            The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence f(n)=∑p∈λf(n−p). This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition (2,1) corresponds to the recurrence f(n)=f(n−1)+f(n−2) with associated characteristic polynomial x2−x−1, which has two real roots.
	Consider the recurrence f(n)=∑p∈λf(n−p). This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition (2,1) corresponds to the recurrence f(n)=f(n−1)+f(n−2) with associated characteristic polynomial x2−x−1, which has two real roots.
Map
            core
	    
	Description
            The core of a graph.
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
	The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
Map
            to edge-partition of connected components
	    
	Description
            Sends a graph to the partition recording the number of edges in its connected components.
	searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!