Identifier
Values
=>
Cc0020;cc-rep-0 Cc0020;cc-rep
([],1)=>([],2)=>1 ([],2)=>([],3)=>1 ([],3)=>([],4)=>1 ([(0,2),(1,2)],3)=>([(1,3),(2,3)],4)=>1 ([(0,1),(0,2),(1,2)],3)=>([(1,2),(1,3),(2,3)],4)=>2 ([],4)=>([],5)=>1 ([(1,3),(2,3)],4)=>([(2,4),(3,4)],5)=>1 ([(0,3),(1,2),(2,3)],4)=>([(1,4),(2,3),(3,4)],5)=>1 ([(1,2),(1,3),(2,3)],4)=>([(2,3),(2,4),(3,4)],5)=>2 ([(0,3),(1,2),(1,3),(2,3)],4)=>([(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([],5)=>([],6)=>1 ([(2,4),(3,4)],5)=>([(3,5),(4,5)],6)=>1 ([(1,4),(2,3),(3,4)],5)=>([(2,5),(3,4),(4,5)],6)=>1 ([(0,1),(2,4),(3,4)],5)=>([(1,2),(3,5),(4,5)],6)=>1 ([(2,3),(2,4),(3,4)],5)=>([(3,4),(3,5),(4,5)],6)=>2 ([(1,4),(2,3),(2,4),(3,4)],5)=>([(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,3),(2,3),(2,4)],5)=>([(1,5),(2,4),(3,4),(3,5)],6)=>1 ([(0,1),(2,3),(2,4),(3,4)],5)=>([(1,2),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The Colin de Verdière graph invariant.
Map
vertex addition
Description
Adds a disconnected vertex to a graph.