Identifier
-
Mp00127:
Permutations
—left-to-right-maxima to Dyck path⟶
Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000718: Graphs ⟶ ℤ
Values
[1] => [1,0] => [2,1] => ([(0,1)],2) => 2
[1,2] => [1,0,1,0] => [3,1,2] => ([(0,2),(1,2)],3) => 3
[2,1] => [1,1,0,0] => [2,3,1] => ([(0,2),(1,2)],3) => 3
[1,2,3] => [1,0,1,0,1,0] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4) => 4
[2,3,1] => [1,1,0,1,0,0] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[3,1,2] => [1,1,1,0,0,0] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => 4
[3,2,1] => [1,1,1,0,0,0] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => 4
[1,2,3,4] => [1,0,1,0,1,0,1,0] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5) => 5
[1,3,4,2] => [1,0,1,1,0,1,0,0] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[2,3,1,4] => [1,1,0,1,0,0,1,0] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[2,3,4,1] => [1,1,0,1,0,1,0,0] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[3,4,1,2] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 5
[3,4,2,1] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 5
[4,1,2,3] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 5
[4,1,3,2] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 5
[4,2,1,3] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 5
[4,2,3,1] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 5
[4,3,1,2] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 5
[4,3,2,1] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 5
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0] => [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0] => [6,1,4,2,3,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0] => [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0] => [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0] => [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0] => [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0] => [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 6
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0] => [6,3,1,5,2,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0] => [6,3,1,5,2,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0] => [6,4,1,5,2,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0] => [6,4,1,5,2,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0] => [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0] => [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 7
[1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0] => [7,1,2,3,6,4,5] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0] => [7,1,2,5,3,4,6] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,2,4,5,6,3] => [1,0,1,0,1,1,0,1,0,1,0,0] => [7,1,2,6,3,4,5] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,2,5,6,3,4] => [1,0,1,0,1,1,1,0,1,0,0,0] => [7,1,2,5,6,3,4] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,2,5,6,4,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [7,1,2,5,6,3,4] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0] => [7,1,4,2,3,5,6] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,3,4,5,2,6] => [1,0,1,1,0,1,0,1,0,0,1,0] => [7,1,5,2,3,4,6] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,3,5,2,6,4] => [1,0,1,1,0,1,1,0,0,1,0,0] => [7,1,4,2,6,3,5] => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,3,5,4,6,2] => [1,0,1,1,0,1,1,0,0,1,0,0] => [7,1,4,2,6,3,5] => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,3,5,6,2,4] => [1,0,1,1,0,1,1,0,1,0,0,0] => [7,1,5,2,6,3,4] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,3,5,6,4,2] => [1,0,1,1,0,1,1,0,1,0,0,0] => [7,1,5,2,6,3,4] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,4,5,2,3,6] => [1,0,1,1,1,0,1,0,0,0,1,0] => [7,1,4,5,2,3,6] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,4,5,2,6,3] => [1,0,1,1,1,0,1,0,0,1,0,0] => [7,1,4,6,2,3,5] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,4,5,3,2,6] => [1,0,1,1,1,0,1,0,0,0,1,0] => [7,1,4,5,2,3,6] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,4,5,3,6,2] => [1,0,1,1,1,0,1,0,0,1,0,0] => [7,1,4,6,2,3,5] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,4,5,6,2,3] => [1,0,1,1,1,0,1,0,1,0,0,0] => [7,1,6,5,2,3,4] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,4,5,6,3,2] => [1,0,1,1,1,0,1,0,1,0,0,0] => [7,1,6,5,2,3,4] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,5,6,2,3,4] => [1,0,1,1,1,1,0,1,0,0,0,0] => [7,1,4,5,6,2,3] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,5,6,2,4,3] => [1,0,1,1,1,1,0,1,0,0,0,0] => [7,1,4,5,6,2,3] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,5,6,3,2,4] => [1,0,1,1,1,1,0,1,0,0,0,0] => [7,1,4,5,6,2,3] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,5,6,3,4,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [7,1,4,5,6,2,3] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,5,6,4,2,3] => [1,0,1,1,1,1,0,1,0,0,0,0] => [7,1,4,5,6,2,3] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,5,6,4,3,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [7,1,4,5,6,2,3] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[2,3,1,4,5,6] => [1,1,0,1,0,0,1,0,1,0,1,0] => [7,3,1,2,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[2,3,1,5,6,4] => [1,1,0,1,0,0,1,1,0,1,0,0] => [7,3,1,2,6,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 7
[2,3,4,1,5,6] => [1,1,0,1,0,1,0,0,1,0,1,0] => [7,4,1,2,3,5,6] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[2,3,4,5,6,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [7,6,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[2,3,5,1,6,4] => [1,1,0,1,0,1,1,0,0,1,0,0] => [7,4,1,2,6,3,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 7
[2,3,5,4,6,1] => [1,1,0,1,0,1,1,0,0,1,0,0] => [7,4,1,2,6,3,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 7
[2,4,1,5,3,6] => [1,1,0,1,1,0,0,1,0,0,1,0] => [7,3,1,5,2,4,6] => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0] => [7,3,1,6,2,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 7
[2,4,3,5,1,6] => [1,1,0,1,1,0,0,1,0,0,1,0] => [7,3,1,5,2,4,6] => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
>>> Load all 317 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest Laplacian eigenvalue of a graph if it is integral.
This statistic is undefined if the largest Laplacian eigenvalue of the graph is not integral.
Various results are collected in Section 3.9 of [1]
This statistic is undefined if the largest Laplacian eigenvalue of the graph is not integral.
Various results are collected in Section 3.9 of [1]
Map
left-to-right-maxima to Dyck path
Description
The left-to-right maxima of a permutation as a Dyck path.
Let (c1,…,ck) be the rise composition Mp00102rise composition of the path. Then the corresponding left-to-right maxima are c1,c1+c2,…,c1+⋯+ck.
Restricted to 321-avoiding permutations, this is the inverse of Mp00119to 321-avoiding permutation (Krattenthaler), restricted to 312-avoiding permutations, this is the inverse of Mp00031to 312-avoiding permutation.
Let (c1,…,ck) be the rise composition Mp00102rise composition of the path. Then the corresponding left-to-right maxima are c1,c1+c2,…,c1+⋯+ck.
Restricted to 321-avoiding permutations, this is the inverse of Mp00119to 321-avoiding permutation (Krattenthaler), restricted to 312-avoiding permutations, this is the inverse of Mp00031to 312-avoiding permutation.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!