Processing math: 100%

Values
[[1,4],[2],[3]] => [[1,2],[3],[4]] => [2,1,1] => [1,1] => 14
[[1],[2],[3],[4]] => [[1,2],[3],[4]] => [2,1,1] => [1,1] => 14
[[1,5],[2],[3]] => [[1,2],[3],[5]] => [2,1,1] => [1,1] => 14
[[1,5],[2],[4]] => [[1,2],[4],[5]] => [2,1,1] => [1,1] => 14
[[1,5],[3],[4]] => [[1,3],[4],[5]] => [2,1,1] => [1,1] => 14
[[2,5],[3],[4]] => [[2,3],[4],[5]] => [2,1,1] => [1,1] => 14
[[1],[2],[3],[5]] => [[1,2],[3],[5]] => [2,1,1] => [1,1] => 14
[[1],[2],[4],[5]] => [[1,2],[4],[5]] => [2,1,1] => [1,1] => 14
[[1],[3],[4],[5]] => [[1,3],[4],[5]] => [2,1,1] => [1,1] => 14
[[2],[3],[4],[5]] => [[2,3],[4],[5]] => [2,1,1] => [1,1] => 14
[[1,1,4],[2],[3]] => [[1,1,2],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,2,4],[2],[3]] => [[1,2,2],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,3,4],[2],[3]] => [[1,2,3],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,4,4],[2],[3]] => [[1,2,4],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,1],[2],[3],[4]] => [[1,1,2],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,2],[2],[3],[4]] => [[1,2,2],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,3],[2],[3],[4]] => [[1,2,3],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,4],[2],[3],[4]] => [[1,2,4],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,1,3,3],[2,2]] => [[1,1,2,2],[3,3]] => [4,2] => [2] => 21
[[1,1,3],[2,2],[3]] => [[1,1,2,2],[3,3]] => [4,2] => [2] => 21
[[1,1],[2,2],[3,3]] => [[1,1,2,2],[3,3]] => [4,2] => [2] => 21
[[1,6],[2],[3]] => [[1,2],[3],[6]] => [2,1,1] => [1,1] => 14
[[1,6],[2],[4]] => [[1,2],[4],[6]] => [2,1,1] => [1,1] => 14
[[1,6],[2],[5]] => [[1,2],[5],[6]] => [2,1,1] => [1,1] => 14
[[1,6],[3],[4]] => [[1,3],[4],[6]] => [2,1,1] => [1,1] => 14
[[1,6],[3],[5]] => [[1,3],[5],[6]] => [2,1,1] => [1,1] => 14
[[1,6],[4],[5]] => [[1,4],[5],[6]] => [2,1,1] => [1,1] => 14
[[2,6],[3],[4]] => [[2,3],[4],[6]] => [2,1,1] => [1,1] => 14
[[2,6],[3],[5]] => [[2,3],[5],[6]] => [2,1,1] => [1,1] => 14
[[2,6],[4],[5]] => [[2,4],[5],[6]] => [2,1,1] => [1,1] => 14
[[3,6],[4],[5]] => [[3,4],[5],[6]] => [2,1,1] => [1,1] => 14
[[1],[2],[3],[6]] => [[1,2],[3],[6]] => [2,1,1] => [1,1] => 14
[[1],[2],[4],[6]] => [[1,2],[4],[6]] => [2,1,1] => [1,1] => 14
[[1],[2],[5],[6]] => [[1,2],[5],[6]] => [2,1,1] => [1,1] => 14
[[1],[3],[4],[6]] => [[1,3],[4],[6]] => [2,1,1] => [1,1] => 14
[[1],[3],[5],[6]] => [[1,3],[5],[6]] => [2,1,1] => [1,1] => 14
[[1],[4],[5],[6]] => [[1,4],[5],[6]] => [2,1,1] => [1,1] => 14
[[2],[3],[4],[6]] => [[2,3],[4],[6]] => [2,1,1] => [1,1] => 14
[[2],[3],[5],[6]] => [[2,3],[5],[6]] => [2,1,1] => [1,1] => 14
[[2],[4],[5],[6]] => [[2,4],[5],[6]] => [2,1,1] => [1,1] => 14
[[3],[4],[5],[6]] => [[3,4],[5],[6]] => [2,1,1] => [1,1] => 14
[[1,3,5],[2,4]] => [[1,2,4],[3,5]] => [3,2] => [2] => 21
[[1,1,5],[2],[3]] => [[1,1,2],[3],[5]] => [3,1,1] => [1,1] => 14
[[1,1,5],[2],[4]] => [[1,1,2],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,1,5],[3],[4]] => [[1,1,3],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,2,5],[2],[3]] => [[1,2,2],[3],[5]] => [3,1,1] => [1,1] => 14
[[1,2,5],[2],[4]] => [[1,2,2],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,3,5],[2],[3]] => [[1,2,3],[3],[5]] => [3,1,1] => [1,1] => 14
[[1,2,5],[3],[4]] => [[1,2,3],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,3,5],[2],[4]] => [[1,2,4],[3],[5]] => [3,1,1] => [1,1] => 14
[[1,4,5],[2],[3]] => [[1,2,5],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,5,5],[2],[3]] => [[1,2,5],[3],[5]] => [3,1,1] => [1,1] => 14
[[1,4,5],[2],[4]] => [[1,2,4],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,5,5],[2],[4]] => [[1,2,5],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,3,5],[3],[4]] => [[1,3,3],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,4,5],[3],[4]] => [[1,3,4],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,5,5],[3],[4]] => [[1,3,5],[4],[5]] => [3,1,1] => [1,1] => 14
[[2,2,5],[3],[4]] => [[2,2,3],[4],[5]] => [3,1,1] => [1,1] => 14
[[2,3,5],[3],[4]] => [[2,3,3],[4],[5]] => [3,1,1] => [1,1] => 14
[[2,4,5],[3],[4]] => [[2,3,4],[4],[5]] => [3,1,1] => [1,1] => 14
[[2,5,5],[3],[4]] => [[2,3,5],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,3],[2,4],[5]] => [[1,2,4],[3,5]] => [3,2] => [2] => 21
[[1,4],[2,5],[3]] => [[1,2,5],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,1],[2],[3],[5]] => [[1,1,2],[3],[5]] => [3,1,1] => [1,1] => 14
[[1,1],[2],[4],[5]] => [[1,1,2],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,1],[3],[4],[5]] => [[1,1,3],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,2],[2],[3],[5]] => [[1,2,2],[3],[5]] => [3,1,1] => [1,1] => 14
[[1,2],[2],[4],[5]] => [[1,2,2],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,3],[2],[3],[5]] => [[1,2,3],[3],[5]] => [3,1,1] => [1,1] => 14
[[1,2],[3],[4],[5]] => [[1,2,3],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,3],[2],[4],[5]] => [[1,2,4],[3],[5]] => [3,1,1] => [1,1] => 14
[[1,4],[2],[3],[5]] => [[1,2,5],[3],[4]] => [3,1,1] => [1,1] => 14
[[1,5],[2],[3],[4]] => [[1,2],[3],[4],[5]] => [2,1,1,1] => [1,1,1] => 14
[[1,5],[2],[3],[5]] => [[1,2,5],[3],[5]] => [3,1,1] => [1,1] => 14
[[1,4],[2],[4],[5]] => [[1,2,4],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,5],[2],[4],[5]] => [[1,2,5],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,3],[3],[4],[5]] => [[1,3,3],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,4],[3],[4],[5]] => [[1,3,4],[4],[5]] => [3,1,1] => [1,1] => 14
[[1,5],[3],[4],[5]] => [[1,3,5],[4],[5]] => [3,1,1] => [1,1] => 14
[[2,2],[3],[4],[5]] => [[2,2,3],[4],[5]] => [3,1,1] => [1,1] => 14
[[2,3],[3],[4],[5]] => [[2,3,3],[4],[5]] => [3,1,1] => [1,1] => 14
[[2,4],[3],[4],[5]] => [[2,3,4],[4],[5]] => [3,1,1] => [1,1] => 14
[[2,5],[3],[4],[5]] => [[2,3,5],[4],[5]] => [3,1,1] => [1,1] => 14
[[1],[2],[3],[4],[5]] => [[1,2],[3],[4],[5]] => [2,1,1,1] => [1,1,1] => 14
[[1,1,3,4],[2,2]] => [[1,1,2,2],[3,4]] => [4,2] => [2] => 21
[[1,1,4,4],[2,2]] => [[1,1,2,2],[4,4]] => [4,2] => [2] => 21
[[1,1,3,4],[2,3]] => [[1,1,2,3],[3,4]] => [4,2] => [2] => 21
[[1,1,4,4],[2,3]] => [[1,1,2,3],[4,4]] => [4,2] => [2] => 21
[[1,1,4,4],[3,3]] => [[1,1,3,3],[4,4]] => [4,2] => [2] => 21
[[1,2,3,4],[2,3]] => [[1,2,2,3],[3,4]] => [4,2] => [2] => 21
[[1,2,4,4],[2,3]] => [[1,2,2,3],[4,4]] => [4,2] => [2] => 21
[[1,2,4,4],[3,3]] => [[1,2,3,3],[4,4]] => [4,2] => [2] => 21
[[2,2,4,4],[3,3]] => [[2,2,3,3],[4,4]] => [4,2] => [2] => 21
[[1,1,1,4],[2],[3]] => [[1,1,1,2],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,2,4],[2],[3]] => [[1,1,2,2],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,3,4],[2],[3]] => [[1,1,2,3],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,4,4],[2],[3]] => [[1,1,2,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,2,2,4],[2],[3]] => [[1,2,2,2],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,2,3,4],[2],[3]] => [[1,2,2,3],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,2,4,4],[2],[3]] => [[1,2,2,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,3,3,4],[2],[3]] => [[1,2,3,3],[3],[4]] => [4,1,1] => [1,1] => 14
>>> Load all 247 entries. <<<
[[1,3,4,4],[2],[3]] => [[1,2,3,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,4,4,4],[2],[3]] => [[1,2,4,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,3],[2,2],[4]] => [[1,1,2,2],[3,4]] => [4,2] => [2] => 21
[[1,1,4],[2,2],[3]] => [[1,1,2,2],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,4],[2,2],[4]] => [[1,1,2,2],[4,4]] => [4,2] => [2] => 21
[[1,1,3],[2,3],[4]] => [[1,1,2,3],[3,4]] => [4,2] => [2] => 21
[[1,1,4],[2,3],[3]] => [[1,1,2,3],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,4],[2,3],[4]] => [[1,1,2,3],[4,4]] => [4,2] => [2] => 21
[[1,1,4],[2,4],[3]] => [[1,1,2,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,4],[3,3],[4]] => [[1,1,3,3],[4,4]] => [4,2] => [2] => 21
[[1,2,3],[2,3],[4]] => [[1,2,2,3],[3,4]] => [4,2] => [2] => 21
[[1,2,4],[2,3],[3]] => [[1,2,2,3],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,2,4],[2,3],[4]] => [[1,2,2,3],[4,4]] => [4,2] => [2] => 21
[[1,2,4],[2,4],[3]] => [[1,2,2,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,2,4],[3,3],[4]] => [[1,2,3,3],[4,4]] => [4,2] => [2] => 21
[[1,3,4],[2,4],[3]] => [[1,2,3,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[2,2,4],[3,3],[4]] => [[2,2,3,3],[4,4]] => [4,2] => [2] => 21
[[1,1,1],[2],[3],[4]] => [[1,1,1,2],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,2],[2],[3],[4]] => [[1,1,2,2],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,3],[2],[3],[4]] => [[1,1,2,3],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,4],[2],[3],[4]] => [[1,1,2,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,2,2],[2],[3],[4]] => [[1,2,2,2],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,2,3],[2],[3],[4]] => [[1,2,2,3],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,2,4],[2],[3],[4]] => [[1,2,2,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,3,3],[2],[3],[4]] => [[1,2,3,3],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,3,4],[2],[3],[4]] => [[1,2,3,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,4,4],[2],[3],[4]] => [[1,2,4,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1],[2,2],[3,4]] => [[1,1,2,2],[3,4]] => [4,2] => [2] => 21
[[1,1],[2,2],[4,4]] => [[1,1,2,2],[4,4]] => [4,2] => [2] => 21
[[1,1],[2,3],[3,4]] => [[1,1,2,3],[3,4]] => [4,2] => [2] => 21
[[1,1],[2,3],[4,4]] => [[1,1,2,3],[4,4]] => [4,2] => [2] => 21
[[1,1],[3,3],[4,4]] => [[1,1,3,3],[4,4]] => [4,2] => [2] => 21
[[1,2],[2,3],[3,4]] => [[1,2,2,3],[3,4]] => [4,2] => [2] => 21
[[1,2],[2,3],[4,4]] => [[1,2,2,3],[4,4]] => [4,2] => [2] => 21
[[1,2],[3,3],[4,4]] => [[1,2,3,3],[4,4]] => [4,2] => [2] => 21
[[2,2],[3,3],[4,4]] => [[2,2,3,3],[4,4]] => [4,2] => [2] => 21
[[1,1],[2,2],[3],[4]] => [[1,1,2,2],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1],[2,3],[3],[4]] => [[1,1,2,3],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1],[2,4],[3],[4]] => [[1,1,2,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,2],[2,3],[3],[4]] => [[1,2,2,3],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,2],[2,4],[3],[4]] => [[1,2,2,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,3],[2,4],[3],[4]] => [[1,2,3,4],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,1,1,3,3],[2,2]] => [[1,1,1,2,2],[3,3]] => [5,2] => [2] => 21
[[1,1,2,3,3],[2,2]] => [[1,1,2,2,2],[3,3]] => [5,2] => [2] => 21
[[1,1,3,3,3],[2,2]] => [[1,1,2,2,3],[3,3]] => [5,2] => [2] => 21
[[1,1,1,3],[2,2],[3]] => [[1,1,1,2,2],[3,3]] => [5,2] => [2] => 21
[[1,1,2,3],[2,2],[3]] => [[1,1,2,2,2],[3,3]] => [5,2] => [2] => 21
[[1,1,3,3],[2,2],[3]] => [[1,1,2,2,3],[3,3]] => [5,2] => [2] => 21
[[1,1,1],[2,2],[3,3]] => [[1,1,1,2,2],[3,3]] => [5,2] => [2] => 21
[[1,1,2],[2,2],[3,3]] => [[1,1,2,2,2],[3,3]] => [5,2] => [2] => 21
[[1,1,3],[2,2],[3,3]] => [[1,1,2,2,3],[3,3]] => [5,2] => [2] => 21
[[1,1,1,1],[2,2,2],[3,3],[4]] => [[1,1,1,1,2,2,2],[3,3],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,2],[2,2,2],[3,3],[4]] => [[1,1,1,2,2,2,2],[3,3],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,1],[2,2,3],[3,3],[4]] => [[1,1,1,1,2,2,3],[3,3],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,2],[2,2,3],[3,3],[4]] => [[1,1,1,2,2,2,3],[3,3],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,3],[2,2,3],[3,3],[4]] => [[1,1,1,2,2,3,3],[3,3],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,2],[2,2,3],[3,3],[4]] => [[1,1,2,2,2,2,3],[3,3],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,3],[2,2,3],[3,3],[4]] => [[1,1,2,2,2,3,3],[3,3],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,1],[2,2,2],[3,4],[4]] => [[1,1,1,1,2,2,2],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,2],[2,2,2],[3,4],[4]] => [[1,1,1,2,2,2,2],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,1],[2,2,3],[3,4],[4]] => [[1,1,1,1,2,2,3],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,2],[2,2,3],[3,4],[4]] => [[1,1,1,2,2,2,3],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,3],[2,2,3],[3,4],[4]] => [[1,1,1,2,2,3],[3,3,4],[4]] => [6,3,1] => [3,1] => 189
[[1,1,2,2],[2,2,3],[3,4],[4]] => [[1,1,2,2,2,2,3],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,3],[2,2,3],[3,4],[4]] => [[1,1,2,2,2,3],[3,3,4],[4]] => [6,3,1] => [3,1] => 189
[[1,1,1,1],[2,2,4],[3,4],[4]] => [[1,1,1,1,2,2,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,2],[2,2,4],[3,4],[4]] => [[1,1,1,2,2,2,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,3],[2,2,4],[3,4],[4]] => [[1,1,1,2,2,4,4],[3,3],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,4],[2,2,4],[3,4],[4]] => [[1,1,1,2,2,4,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,2],[2,2,4],[3,4],[4]] => [[1,1,2,2,2,2,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,3],[2,2,4],[3,4],[4]] => [[1,1,2,2,2,4,4],[3,3],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,4],[2,2,4],[3,4],[4]] => [[1,1,2,2,2,4,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,1],[2,3,3],[3,4],[4]] => [[1,1,1,1,2,3,3],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,2],[2,3,3],[3,4],[4]] => [[1,1,1,2,2,3,3],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,3],[2,3,3],[3,4],[4]] => [[1,1,1,2,3,3,3],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,2],[2,3,3],[3,4],[4]] => [[1,1,2,2,2,3,3],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,3],[2,3,3],[3,4],[4]] => [[1,1,2,2,3,3,3],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,1],[2,3,4],[3,4],[4]] => [[1,1,1,1,2,3,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,2],[2,3,4],[3,4],[4]] => [[1,1,1,2,2,3,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,3],[2,3,4],[3,4],[4]] => [[1,1,1,2,3,3,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,1,4],[2,3,4],[3,4],[4]] => [[1,1,1,2,3,4,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,2],[2,3,4],[3,4],[4]] => [[1,1,2,2,2,3,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,3],[2,3,4],[3,4],[4]] => [[1,1,2,2,3,3,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,2,4],[2,3,4],[3,4],[4]] => [[1,1,2,2,3,4,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,3,3],[2,3,4],[3,4],[4]] => [[1,1,2,3,3,3,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,1,3,4],[2,3,4],[3,4],[4]] => [[1,1,2,3,3,4,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,2,2,2],[2,3,3],[3,4],[4]] => [[1,2,2,2,2,3,3],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,2,2,3],[2,3,3],[3,4],[4]] => [[1,2,2,2,3,3,3],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,2,2,2],[2,3,4],[3,4],[4]] => [[1,2,2,2,2,3,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,2,2,3],[2,3,4],[3,4],[4]] => [[1,2,2,2,3,3,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,2,2,4],[2,3,4],[3,4],[4]] => [[1,2,2,2,3,4,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,2,3,3],[2,3,4],[3,4],[4]] => [[1,2,2,3,3,3,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,2,3,4],[2,3,4],[3,4],[4]] => [[1,2,2,3,3,4,4],[3,4],[4]] => [7,2,1] => [2,1] => 64
[[1,2,3,6],[4],[5]] => [[1,2,3,4],[5],[6]] => [4,1,1] => [1,1] => 14
[[1,2,3],[4],[5],[6]] => [[1,2,3,4],[5],[6]] => [4,1,1] => [1,1] => 14
[[1,2,4,6],[3,5]] => [[1,2,3,5],[4,6]] => [4,2] => [2] => 21
[[1,2,4],[3,5],[6]] => [[1,2,3,5],[4,6]] => [4,2] => [2] => 21
[[1,2,4,6],[3],[5]] => [[1,2,3,5],[4],[6]] => [4,1,1] => [1,1] => 14
[[1,2,4],[3],[5],[6]] => [[1,2,3,5],[4],[6]] => [4,1,1] => [1,1] => 14
[[1,2,5,6],[3],[4]] => [[1,2,3,6],[4],[5]] => [4,1,1] => [1,1] => 14
[[1,2,5],[3,6],[4]] => [[1,2,3,6],[4],[5]] => [4,1,1] => [1,1] => 14
[[1,2,5],[3],[4],[6]] => [[1,2,3,6],[4],[5]] => [4,1,1] => [1,1] => 14
[[1,2,6],[3],[4],[5]] => [[1,2,3],[4],[5],[6]] => [3,1,1,1] => [1,1,1] => 14
[[1,2],[3],[4],[5],[6]] => [[1,2,3],[4],[5],[6]] => [3,1,1,1] => [1,1,1] => 14
[[1,3,4,6],[2,5]] => [[1,2,4,5],[3,6]] => [4,2] => [2] => 21
[[1,3,4],[2,5],[6]] => [[1,2,4,5],[3,6]] => [4,2] => [2] => 21
[[1,3,5,6],[2,4]] => [[1,2,4,6],[3,5]] => [4,2] => [2] => 21
[[1,3,5],[2,4,6]] => [[1,2,4,6],[3,5]] => [4,2] => [2] => 21
[[1,3,5],[2,4],[6]] => [[1,2,4,6],[3,5]] => [4,2] => [2] => 21
[[1,3,6],[2,4],[5]] => [[1,2,4],[3,5],[6]] => [3,2,1] => [2,1] => 64
[[1,3],[2,4],[5],[6]] => [[1,2,4],[3,5],[6]] => [3,2,1] => [2,1] => 64
[[1,3,4,6],[2],[5]] => [[1,2,4,5],[3],[6]] => [4,1,1] => [1,1] => 14
[[1,3,4],[2],[5],[6]] => [[1,2,4,5],[3],[6]] => [4,1,1] => [1,1] => 14
[[1,3,5,6],[2],[4]] => [[1,2,4,6],[3],[5]] => [4,1,1] => [1,1] => 14
[[1,3,5],[2,6],[4]] => [[1,2,4,6],[3],[5]] => [4,1,1] => [1,1] => 14
[[1,3,5],[2],[4],[6]] => [[1,2,4,6],[3],[5]] => [4,1,1] => [1,1] => 14
[[1,3,6],[2],[4],[5]] => [[1,2,4],[3],[5],[6]] => [3,1,1,1] => [1,1,1] => 14
[[1,3],[2],[4],[5],[6]] => [[1,2,4],[3],[5],[6]] => [3,1,1,1] => [1,1,1] => 14
[[1,2,5,6],[3,4]] => [[1,2,3,4],[5,6]] => [4,2] => [2] => 21
[[1,2,5],[3,4],[6]] => [[1,2,3,4],[5,6]] => [4,2] => [2] => 21
[[1,2,6],[3,4],[5]] => [[1,2,3,4],[5],[6]] => [4,1,1] => [1,1] => 14
[[1,2],[3,4],[5],[6]] => [[1,2,3,4],[5],[6]] => [4,1,1] => [1,1] => 14
[[1,4,5,6],[2],[3]] => [[1,2,5,6],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,4,5],[2,6],[3]] => [[1,2,5,6],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,4,6],[2,5],[3]] => [[1,2,5],[3,6],[4]] => [3,2,1] => [2,1] => 64
[[1,4],[2,5],[3,6]] => [[1,2,5],[3,6],[4]] => [3,2,1] => [2,1] => 64
[[1,4],[2,5],[3],[6]] => [[1,2,5],[3,6],[4]] => [3,2,1] => [2,1] => 64
[[1,4,5],[2],[3],[6]] => [[1,2,5,6],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,4,6],[2],[3],[5]] => [[1,2,5],[3],[4],[6]] => [3,1,1,1] => [1,1,1] => 14
[[1,4],[2],[3],[5],[6]] => [[1,2,5],[3],[4],[6]] => [3,1,1,1] => [1,1,1] => 14
[[1,2,6],[3,5],[4]] => [[1,2,3,5],[4],[6]] => [4,1,1] => [1,1] => 14
[[1,2],[3,5],[4],[6]] => [[1,2,3,5],[4],[6]] => [4,1,1] => [1,1] => 14
[[1,3,6],[2,5],[4]] => [[1,2,4,5],[3],[6]] => [4,1,1] => [1,1] => 14
[[1,3],[2,5],[4,6]] => [[1,2,4,5],[3,6]] => [4,2] => [2] => 21
[[1,3],[2,5],[4],[6]] => [[1,2,4,5],[3],[6]] => [4,1,1] => [1,1] => 14
[[1,2],[3,5],[4,6]] => [[1,2,3,5],[4,6]] => [4,2] => [2] => 21
[[1,5,6],[2],[3],[4]] => [[1,2,6],[3],[4],[5]] => [3,1,1,1] => [1,1,1] => 14
[[1,5],[2,6],[3],[4]] => [[1,2,6],[3],[4],[5]] => [3,1,1,1] => [1,1,1] => 14
[[1,5],[2],[3],[4],[6]] => [[1,2,6],[3],[4],[5]] => [3,1,1,1] => [1,1,1] => 14
[[1,2],[3,6],[4],[5]] => [[1,2,3,6],[4],[5]] => [4,1,1] => [1,1] => 14
[[1,3],[2,4],[5,6]] => [[1,2,4,6],[3,5]] => [4,2] => [2] => 21
[[1,3],[2,6],[4],[5]] => [[1,2,4,6],[3],[5]] => [4,1,1] => [1,1] => 14
[[1,2],[3,4],[5,6]] => [[1,2,3,4],[5,6]] => [4,2] => [2] => 21
[[1,4],[2,6],[3],[5]] => [[1,2,5,6],[3],[4]] => [4,1,1] => [1,1] => 14
[[1,6],[2],[3],[4],[5]] => [[1,2],[3],[4],[5],[6]] => [2,1,1,1,1] => [1,1,1,1] => 0
[[1],[2],[3],[4],[5],[6]] => [[1,2],[3],[4],[5],[6]] => [2,1,1,1,1] => [1,1,1,1] => 0
search for individual values
searching the database for the individual values of this statistic
Description
The dimension of the irreducible representation of Sp(6) labelled by an integer partition.
Consider the symplectic group Sp(2n). Then the integer partition (μ1,,μk) of length at most n corresponds to the weight vector (μ1μ2,,μk2μk1,μn,0,,0).
For example, the integer partition (2) labels the symmetric square of the vector representation, whereas the integer partition (1,1) labels the second fundamental representation.
Map
first row removal
Description
Removes the first entry of an integer partition
Map
catabolism
Description
Remove the first row of the semistandard tableau and insert it back using column Schensted insertion, starting with the largest number.
The algorithm for column-inserting an entry k into tableau T is as follows:
If k is larger than all entries in the first column, place k at the bottom of the first column and the procedure is finished. Otherwise, place k in the first column, replacing the smallest entry, y, greater or equal to than k. Now insert y into the second column using the same procedure: if y is greater than all entries in the second column, place it at the bottom of that column (provided that the result is still a tableau). Otherwise, place y in the second column, replacing, or 'bumping', the smallest entry, z, larger than or equal to y. Continue the procedure until we have placed a bumped entry at the bottom of a column (or on its own in a new column).
Map
shape
Description
Return the shape of a tableau.