*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000716

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The dimension of the irreducible representation of Sp(6) labelled by an integer partition.

Consider the symplectic group $Sp(2n)$.  Then the integer partition $(\mu_1,\dots,\mu_k)$ of length at most $n$ corresponds to the weight vector $(\mu_1-\mu_2,\dots,\mu_{k-2}-\mu_{k-1},\mu_n,0,\dots,0)$.

For example, the integer partition $(2)$ labels the symmetric square of the vector representation, whereas the integer partition $(1,1)$ labels the second fundamental representation.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(mu):
    C = CartanType("C3")
    if len(mu) <= C.rank() or (C.type()=="A" and len(mu) <= C.rank()+1):
        w = [m1-m2 for m1,m2 in zip(mu, mu[1:])] + [mu[-1]] + [0]*(C.rank()-len(mu))
        return WeylDim(C, w)
    else:
        return 0

-----------------------------------------------------------------------------
Statistic values:

[2]                       => 21
[1,1]                     => 14
[3]                       => 56
[2,1]                     => 64
[1,1,1]                   => 14
[4]                       => 126
[3,1]                     => 189
[2,2]                     => 90
[2,1,1]                   => 70
[1,1,1,1]                 => 0
[5]                       => 252
[4,1]                     => 448
[3,2]                     => 350
[3,1,1]                   => 216
[2,2,1]                   => 126
[2,1,1,1]                 => 0
[1,1,1,1,1]               => 0
[6]                       => 462
[5,1]                     => 924
[4,2]                     => 924
[4,1,1]                   => 525
[3,3]                     => 385
[3,2,1]                   => 512
[3,1,1,1]                 => 0
[2,2,2]                   => 84
[2,2,1,1]                 => 0
[2,1,1,1,1]               => 0
[1,1,1,1,1,1]             => 0
[7]                       => 792
[6,1]                     => 1728
[5,2]                     => 2016
[5,1,1]                   => 1100
[4,3]                     => 1344
[4,2,1]                   => 1386
[4,1,1,1]                 => 0
[3,3,1]                   => 616
[3,2,2]                   => 378
[3,2,1,1]                 => 0
[3,1,1,1,1]               => 0
[2,2,2,1]                 => 0
[2,2,1,1,1]               => 0
[2,1,1,1,1,1]             => 0
[1,1,1,1,1,1,1]           => 0
[8]                       => 1287
[7,1]                     => 3003
[6,2]                     => 3900
[6,1,1]                   => 2079
[5,3]                     => 3276
[5,2,1]                   => 3072
[5,1,1,1]                 => 0
[4,4]                     => 1274
[4,3,1]                   => 2205
[4,2,2]                   => 1078
[4,2,1,1]                 => 0
[4,1,1,1,1]               => 0
[3,3,2]                   => 594
[3,3,1,1]                 => 0
[3,2,2,1]                 => 0
[3,2,1,1,1]               => 0
[3,1,1,1,1,1]             => 0
[2,2,2,2]                 => 0
[2,2,2,1,1]               => 0
[2,2,1,1,1,1]             => 0
[2,1,1,1,1,1,1]           => 0
[1,1,1,1,1,1,1,1]         => 0
[9]                       => 2002
[8,1]                     => 4928
[7,2]                     => 6930
[7,1,1]                   => 3640
[6,3]                     => 6720
[6,2,1]                   => 6006
[6,1,1,1]                 => 0
[5,4]                     => 4116
[5,3,1]                   => 5460
[5,2,2]                   => 2464
[5,2,1,1]                 => 0
[5,1,1,1,1]               => 0
[4,4,1]                   => 2184
[4,3,2]                   => 2240
[4,3,1,1]                 => 0
[4,2,2,1]                 => 0
[4,2,1,1,1]               => 0
[4,1,1,1,1,1]             => 0
[3,3,3]                   => 330
[3,3,2,1]                 => 0
[3,3,1,1,1]               => 0
[3,2,2,2]                 => 0
[3,2,2,1,1]               => 0
[3,2,1,1,1,1]             => 0
[3,1,1,1,1,1,1]           => 0
[2,2,2,2,1]               => 0
[2,2,2,1,1,1]             => 0
[2,2,1,1,1,1,1]           => 0
[2,1,1,1,1,1,1,1]         => 0
[1,1,1,1,1,1,1,1,1]       => 0
[10]                      => 3003
[9,1]                     => 7722
[8,2]                     => 11550
[8,1,1]                   => 6006
[7,3]                     => 12375
[7,2,1]                   => 10752
[7,1,1,1]                 => 0
[6,4]                     => 9450
[6,3,1]                   => 11319
[6,2,2]                   => 4914
[6,2,1,1]                 => 0
[6,1,1,1,1]               => 0
[5,5]                     => 3528
[5,4,1]                   => 7168
[5,3,2]                   => 5720
[5,3,1,1]                 => 0
[5,2,2,1]                 => 0
[5,2,1,1,1]               => 0
[5,1,1,1,1,1]             => 0
[4,4,2]                   => 2457
[4,4,1,1]                 => 0
[4,3,3]                   => 1386
[4,3,2,1]                 => 0
[4,3,1,1,1]               => 0
[4,2,2,2]                 => 0
[4,2,2,1,1]               => 0
[4,2,1,1,1,1]             => 0
[4,1,1,1,1,1,1]           => 0
[3,3,3,1]                 => 0
[3,3,2,2]                 => 0
[3,3,2,1,1]               => 0
[3,3,1,1,1,1]             => 0
[3,2,2,2,1]               => 0
[3,2,2,1,1,1]             => 0
[3,2,1,1,1,1,1]           => 0
[3,1,1,1,1,1,1,1]         => 0
[2,2,2,2,2]               => 0
[2,2,2,2,1,1]             => 0
[2,2,2,1,1,1,1]           => 0
[2,2,1,1,1,1,1,1]         => 0
[2,1,1,1,1,1,1,1,1]       => 0
[1,1,1,1,1,1,1,1,1,1]     => 0
[11]                      => 4368
[10,1]                    => 11648
[9,2]                     => 18304
[9,1,1]                   => 9450
[8,3]                     => 21120
[8,2,1]                   => 18018
[8,1,1,1]                 => 0
[7,4]                     => 18480
[7,3,1]                   => 21000
[7,2,2]                   => 8918
[7,2,1,1]                 => 0
[7,1,1,1,1]               => 0
[6,5]                     => 10752
[6,4,1]                   => 16632
[6,3,2]                   => 12096
[6,3,1,1]                 => 0
[6,2,2,1]                 => 0
[6,2,1,1,1]               => 0
[6,1,1,1,1,1]             => 0
[5,5,1]                   => 6300
[5,4,2]                   => 8316
[5,4,1,1]                 => 0
[5,3,3]                   => 3744
[5,3,2,1]                 => 0
[5,3,1,1,1]               => 0
[5,2,2,2]                 => 0
[5,2,2,1,1]               => 0
[5,2,1,1,1,1]             => 0
[5,1,1,1,1,1,1]           => 0
[4,4,3]                   => 2002
[4,4,2,1]                 => 0
[4,4,1,1,1]               => 0
[4,3,3,1]                 => 0
[4,3,2,2]                 => 0
[4,3,2,1,1]               => 0
[4,3,1,1,1,1]             => 0
[4,2,2,2,1]               => 0
[4,2,2,1,1,1]             => 0
[4,2,1,1,1,1,1]           => 0
[4,1,1,1,1,1,1,1]         => 0
[3,3,3,2]                 => 0
[3,3,3,1,1]               => 0
[3,3,2,2,1]               => 0
[3,3,2,1,1,1]             => 0
[3,3,1,1,1,1,1]           => 0
[3,2,2,2,2]               => 0
[3,2,2,2,1,1]             => 0
[3,2,2,1,1,1,1]           => 0
[3,2,1,1,1,1,1,1]         => 0
[3,1,1,1,1,1,1,1,1]       => 0
[2,2,2,2,2,1]             => 0
[2,2,2,2,1,1,1]           => 0
[2,2,2,1,1,1,1,1]         => 0
[2,2,1,1,1,1,1,1,1]       => 0
[2,1,1,1,1,1,1,1,1,1]     => 0
[1,1,1,1,1,1,1,1,1,1,1]   => 0
[12]                      => 6188
[11,1]                    => 17017
[10,2]                    => 27846
[10,1,1]                  => 14300
[9,3]                     => 34034
[9,2,1]                   => 28672
[9,1,1,1]                 => 0
[8,4]                     => 32725
[8,3,1]                   => 36036
[8,2,2]                   => 15092
[8,2,1,1]                 => 0
[8,1,1,1,1]               => 0
[7,5]                     => 23562
[7,4,1]                   => 32768
[7,3,2]                   => 22750
[7,3,1,1]                 => 0
[7,2,2,1]                 => 0
[7,2,1,1,1]               => 0
[7,1,1,1,1,1]             => 0
[6,6]                     => 8568
[6,5,1]                   => 19404
[6,4,2]                   => 19683
[6,4,1,1]                 => 0
[6,3,3]                   => 8190
[6,3,2,1]                 => 0
[6,3,1,1,1]               => 0
[6,2,2,2]                 => 0
[6,2,2,1,1]               => 0
[6,2,1,1,1,1]             => 0
[6,1,1,1,1,1,1]           => 0
[5,5,2]                   => 7700
[5,5,1,1]                 => 0
[5,4,3]                   => 7168
[5,4,2,1]                 => 0
[5,4,1,1,1]               => 0
[5,3,3,1]                 => 0
[5,3,2,2]                 => 0
[5,3,2,1,1]               => 0
[5,3,1,1,1,1]             => 0
[5,2,2,2,1]               => 0
[5,2,2,1,1,1]             => 0
[5,2,1,1,1,1,1]           => 0
[5,1,1,1,1,1,1,1]         => 0
[4,4,4]                   => 1001
[4,4,3,1]                 => 0
[4,4,2,2]                 => 0
[4,4,2,1,1]               => 0
[4,4,1,1,1,1]             => 0
[4,3,3,2]                 => 0
[4,3,3,1,1]               => 0
[4,3,2,2,1]               => 0
[4,3,2,1,1,1]             => 0
[4,3,1,1,1,1,1]           => 0
[4,2,2,2,2]               => 0
[4,2,2,2,1,1]             => 0
[4,2,2,1,1,1,1]           => 0
[4,2,1,1,1,1,1,1]         => 0
[4,1,1,1,1,1,1,1,1]       => 0
[3,3,3,3]                 => 0
[3,3,3,2,1]               => 0
[3,3,3,1,1,1]             => 0
[3,3,2,2,2]               => 0
[3,3,2,2,1,1]             => 0
[3,3,2,1,1,1,1]           => 0
[3,3,1,1,1,1,1,1]         => 0
[3,2,2,2,2,1]             => 0
[3,2,2,2,1,1,1]           => 0
[3,2,2,1,1,1,1,1]         => 0
[3,2,1,1,1,1,1,1,1]       => 0
[3,1,1,1,1,1,1,1,1,1]     => 0
[2,2,2,2,2,2]             => 0
[2,2,2,2,2,1,1]           => 0
[2,2,2,2,1,1,1,1]         => 0
[2,2,2,1,1,1,1,1,1]       => 0
[2,2,1,1,1,1,1,1,1,1]     => 0
[2,1,1,1,1,1,1,1,1,1,1]   => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => 0

-----------------------------------------------------------------------------
Created: Mar 21, 2017 at 08:32 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Mar 21, 2017 at 08:32 by Martin Rubey