Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000714: Integer partitions ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => 1
([],4) => [1,1,1,1] => [1,1,1] => 0
([(2,3)],4) => [2,1,1] => [1,1] => 1
([(0,3),(1,2)],4) => [2,2] => [2] => 3
([],5) => [1,1,1,1,1] => [1,1,1,1] => 0
([(3,4)],5) => [2,1,1,1] => [1,1,1] => 0
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => 1
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => 2
([(0,1),(2,4),(3,4)],5) => [3,2] => [2] => 3
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [2] => 3
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => 0
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => 0
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 0
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => 0
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => 1
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 2
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => [4,2] => [2] => 3
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => 1
([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => 1
([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [2] => 3
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [2] => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,3] => [3] => 4
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [3] => 4
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 3
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 0
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => 0
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 0
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => 0
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 0
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 2
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 4
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => 0
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => 2
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 1
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 0
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [5,2] => [2] => 3
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 2
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 4
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 3
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 3
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 4
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 2
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [4,3] => [3] => 4
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 3
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 4
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [4,3] => [3] => 4
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 1
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,2] => [2] => 3
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 4
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => 3
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 3
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 4
>>> Load all 216 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of semistandard Young tableau of given shape, with entries at most 2.
This is also the dimension of the corresponding irreducible representation of GL2.
This is also the dimension of the corresponding irreducible representation of GL2.
Map
first row removal
Description
Removes the first entry of an integer partition
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!