*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000713

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The dimension of the irreducible representation of Sp(4) labelled by an integer partition.

Consider the symplectic group $Sp(2n)$.  Then the integer partition $(\mu_1,\dots,\mu_k)$ of length at most $n$ corresponds to the weight vector $(\mu_1-\mu_2,\dots,\mu_{k-2}-\mu_{k-1},\mu_n,0,\dots,0)$.

For example, the integer partition $(2)$ labels the symmetric square of the vector representation, whereas the integer partition $(1,1)$ labels the second fundamental representation.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(mu):
    C = CartanType("C2")
    if len(mu) <= C.rank() or (C.type()=="A" and len(mu) <= C.rank()+1):
        w = [m1-m2 for m1,m2 in zip(mu, mu[1:])] + [mu[-1]] + [0]*(C.rank()-len(mu))
        return WeylDim(C, w)
    else:
        return 0

-----------------------------------------------------------------------------
Statistic values:

[2]                       => 10
[1,1]                     => 5
[3]                       => 20
[2,1]                     => 16
[1,1,1]                   => 0
[4]                       => 35
[3,1]                     => 35
[2,2]                     => 14
[2,1,1]                   => 0
[1,1,1,1]                 => 0
[5]                       => 56
[4,1]                     => 64
[3,2]                     => 40
[3,1,1]                   => 0
[2,2,1]                   => 0
[2,1,1,1]                 => 0
[1,1,1,1,1]               => 0
[6]                       => 84
[5,1]                     => 105
[4,2]                     => 81
[4,1,1]                   => 0
[3,3]                     => 30
[3,2,1]                   => 0
[3,1,1,1]                 => 0
[2,2,2]                   => 0
[2,2,1,1]                 => 0
[2,1,1,1,1]               => 0
[1,1,1,1,1,1]             => 0
[7]                       => 120
[6,1]                     => 160
[5,2]                     => 140
[5,1,1]                   => 0
[4,3]                     => 80
[4,2,1]                   => 0
[4,1,1,1]                 => 0
[3,3,1]                   => 0
[3,2,2]                   => 0
[3,2,1,1]                 => 0
[3,1,1,1,1]               => 0
[2,2,2,1]                 => 0
[2,2,1,1,1]               => 0
[2,1,1,1,1,1]             => 0
[1,1,1,1,1,1,1]           => 0
[8]                       => 165
[7,1]                     => 231
[6,2]                     => 220
[6,1,1]                   => 0
[5,3]                     => 154
[5,2,1]                   => 0
[5,1,1,1]                 => 0
[4,4]                     => 55
[4,3,1]                   => 0
[4,2,2]                   => 0
[4,2,1,1]                 => 0
[4,1,1,1,1]               => 0
[3,3,2]                   => 0
[3,3,1,1]                 => 0
[3,2,2,1]                 => 0
[3,2,1,1,1]               => 0
[3,1,1,1,1,1]             => 0
[2,2,2,2]                 => 0
[2,2,2,1,1]               => 0
[2,2,1,1,1,1]             => 0
[2,1,1,1,1,1,1]           => 0
[1,1,1,1,1,1,1,1]         => 0
[9]                       => 220
[8,1]                     => 320
[7,2]                     => 324
[7,1,1]                   => 0
[6,3]                     => 256
[6,2,1]                   => 0
[6,1,1,1]                 => 0
[5,4]                     => 140
[5,3,1]                   => 0
[5,2,2]                   => 0
[5,2,1,1]                 => 0
[5,1,1,1,1]               => 0
[4,4,1]                   => 0
[4,3,2]                   => 0
[4,3,1,1]                 => 0
[4,2,2,1]                 => 0
[4,2,1,1,1]               => 0
[4,1,1,1,1,1]             => 0
[3,3,3]                   => 0
[3,3,2,1]                 => 0
[3,3,1,1,1]               => 0
[3,2,2,2]                 => 0
[3,2,2,1,1]               => 0
[3,2,1,1,1,1]             => 0
[3,1,1,1,1,1,1]           => 0
[2,2,2,2,1]               => 0
[2,2,2,1,1,1]             => 0
[2,2,1,1,1,1,1]           => 0
[2,1,1,1,1,1,1,1]         => 0
[1,1,1,1,1,1,1,1,1]       => 0
[10]                      => 286
[9,1]                     => 429
[8,2]                     => 455
[8,1,1]                   => 0
[7,3]                     => 390
[7,2,1]                   => 0
[7,1,1,1]                 => 0
[6,4]                     => 260
[6,3,1]                   => 0
[6,2,2]                   => 0
[6,2,1,1]                 => 0
[6,1,1,1,1]               => 0
[5,5]                     => 91
[5,4,1]                   => 0
[5,3,2]                   => 0
[5,3,1,1]                 => 0
[5,2,2,1]                 => 0
[5,2,1,1,1]               => 0
[5,1,1,1,1,1]             => 0
[4,4,2]                   => 0
[4,4,1,1]                 => 0
[4,3,3]                   => 0
[4,3,2,1]                 => 0
[4,3,1,1,1]               => 0
[4,2,2,2]                 => 0
[4,2,2,1,1]               => 0
[4,2,1,1,1,1]             => 0
[4,1,1,1,1,1,1]           => 0
[3,3,3,1]                 => 0
[3,3,2,2]                 => 0
[3,3,2,1,1]               => 0
[3,3,1,1,1,1]             => 0
[3,2,2,2,1]               => 0
[3,2,2,1,1,1]             => 0
[3,2,1,1,1,1,1]           => 0
[3,1,1,1,1,1,1,1]         => 0
[2,2,2,2,2]               => 0
[2,2,2,2,1,1]             => 0
[2,2,2,1,1,1,1]           => 0
[2,2,1,1,1,1,1,1]         => 0
[2,1,1,1,1,1,1,1,1]       => 0
[1,1,1,1,1,1,1,1,1,1]     => 0
[11]                      => 364
[10,1]                    => 560
[9,2]                     => 616
[9,1,1]                   => 0
[8,3]                     => 560
[8,2,1]                   => 0
[8,1,1,1]                 => 0
[7,4]                     => 420
[7,3,1]                   => 0
[7,2,2]                   => 0
[7,2,1,1]                 => 0
[7,1,1,1,1]               => 0
[6,5]                     => 224
[6,4,1]                   => 0
[6,3,2]                   => 0
[6,3,1,1]                 => 0
[6,2,2,1]                 => 0
[6,2,1,1,1]               => 0
[6,1,1,1,1,1]             => 0
[5,5,1]                   => 0
[5,4,2]                   => 0
[5,4,1,1]                 => 0
[5,3,3]                   => 0
[5,3,2,1]                 => 0
[5,3,1,1,1]               => 0
[5,2,2,2]                 => 0
[5,2,2,1,1]               => 0
[5,2,1,1,1,1]             => 0
[5,1,1,1,1,1,1]           => 0
[4,4,3]                   => 0
[4,4,2,1]                 => 0
[4,4,1,1,1]               => 0
[4,3,3,1]                 => 0
[4,3,2,2]                 => 0
[4,3,2,1,1]               => 0
[4,3,1,1,1,1]             => 0
[4,2,2,2,1]               => 0
[4,2,2,1,1,1]             => 0
[4,2,1,1,1,1,1]           => 0
[4,1,1,1,1,1,1,1]         => 0
[3,3,3,2]                 => 0
[3,3,3,1,1]               => 0
[3,3,2,2,1]               => 0
[3,3,2,1,1,1]             => 0
[3,3,1,1,1,1,1]           => 0
[3,2,2,2,2]               => 0
[3,2,2,2,1,1]             => 0
[3,2,2,1,1,1,1]           => 0
[3,2,1,1,1,1,1,1]         => 0
[3,1,1,1,1,1,1,1,1]       => 0
[2,2,2,2,2,1]             => 0
[2,2,2,2,1,1,1]           => 0
[2,2,2,1,1,1,1,1]         => 0
[2,2,1,1,1,1,1,1,1]       => 0
[2,1,1,1,1,1,1,1,1,1]     => 0
[1,1,1,1,1,1,1,1,1,1,1]   => 0
[12]                      => 455
[11,1]                    => 715
[10,2]                    => 810
[10,1,1]                  => 0
[9,3]                     => 770
[9,2,1]                   => 0
[9,1,1,1]                 => 0
[8,4]                     => 625
[8,3,1]                   => 0
[8,2,2]                   => 0
[8,2,1,1]                 => 0
[8,1,1,1,1]               => 0
[7,5]                     => 405
[7,4,1]                   => 0
[7,3,2]                   => 0
[7,3,1,1]                 => 0
[7,2,2,1]                 => 0
[7,2,1,1,1]               => 0
[7,1,1,1,1,1]             => 0
[6,6]                     => 140
[6,5,1]                   => 0
[6,4,2]                   => 0
[6,4,1,1]                 => 0
[6,3,3]                   => 0
[6,3,2,1]                 => 0
[6,3,1,1,1]               => 0
[6,2,2,2]                 => 0
[6,2,2,1,1]               => 0
[6,2,1,1,1,1]             => 0
[6,1,1,1,1,1,1]           => 0
[5,5,2]                   => 0
[5,5,1,1]                 => 0
[5,4,3]                   => 0
[5,4,2,1]                 => 0
[5,4,1,1,1]               => 0
[5,3,3,1]                 => 0
[5,3,2,2]                 => 0
[5,3,2,1,1]               => 0
[5,3,1,1,1,1]             => 0
[5,2,2,2,1]               => 0
[5,2,2,1,1,1]             => 0
[5,2,1,1,1,1,1]           => 0
[5,1,1,1,1,1,1,1]         => 0
[4,4,4]                   => 0
[4,4,3,1]                 => 0
[4,4,2,2]                 => 0
[4,4,2,1,1]               => 0
[4,4,1,1,1,1]             => 0
[4,3,3,2]                 => 0
[4,3,3,1,1]               => 0
[4,3,2,2,1]               => 0
[4,3,2,1,1,1]             => 0
[4,3,1,1,1,1,1]           => 0
[4,2,2,2,2]               => 0
[4,2,2,2,1,1]             => 0
[4,2,2,1,1,1,1]           => 0
[4,2,1,1,1,1,1,1]         => 0
[4,1,1,1,1,1,1,1,1]       => 0
[3,3,3,3]                 => 0
[3,3,3,2,1]               => 0
[3,3,3,1,1,1]             => 0
[3,3,2,2,2]               => 0
[3,3,2,2,1,1]             => 0
[3,3,2,1,1,1,1]           => 0
[3,3,1,1,1,1,1,1]         => 0
[3,2,2,2,2,1]             => 0
[3,2,2,2,1,1,1]           => 0
[3,2,2,1,1,1,1,1]         => 0
[3,2,1,1,1,1,1,1,1]       => 0
[3,1,1,1,1,1,1,1,1,1]     => 0
[2,2,2,2,2,2]             => 0
[2,2,2,2,2,1,1]           => 0
[2,2,2,2,1,1,1,1]         => 0
[2,2,2,1,1,1,1,1,1]       => 0
[2,2,1,1,1,1,1,1,1,1]     => 0
[2,1,1,1,1,1,1,1,1,1,1]   => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => 0

-----------------------------------------------------------------------------
Created: Mar 21, 2017 at 08:29 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Mar 21, 2017 at 08:29 by Martin Rubey