*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000707

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The product of the factorials of the parts.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(la):
    return prod(factorial(p) for p in la)


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 2
[1,1]                     => 1
[3]                       => 6
[2,1]                     => 2
[1,1,1]                   => 1
[4]                       => 24
[3,1]                     => 6
[2,2]                     => 4
[2,1,1]                   => 2
[1,1,1,1]                 => 1
[5]                       => 120
[4,1]                     => 24
[3,2]                     => 12
[3,1,1]                   => 6
[2,2,1]                   => 4
[2,1,1,1]                 => 2
[1,1,1,1,1]               => 1
[6]                       => 720
[5,1]                     => 120
[4,2]                     => 48
[4,1,1]                   => 24
[3,3]                     => 36
[3,2,1]                   => 12
[3,1,1,1]                 => 6
[2,2,2]                   => 8
[2,2,1,1]                 => 4
[2,1,1,1,1]               => 2
[1,1,1,1,1,1]             => 1
[7]                       => 5040
[6,1]                     => 720
[5,2]                     => 240
[5,1,1]                   => 120
[4,3]                     => 144
[4,2,1]                   => 48
[4,1,1,1]                 => 24
[3,3,1]                   => 36
[3,2,2]                   => 24
[3,2,1,1]                 => 12
[3,1,1,1,1]               => 6
[2,2,2,1]                 => 8
[2,2,1,1,1]               => 4
[2,1,1,1,1,1]             => 2
[1,1,1,1,1,1,1]           => 1
[8]                       => 40320
[7,1]                     => 5040
[6,2]                     => 1440
[6,1,1]                   => 720
[5,3]                     => 720
[5,2,1]                   => 240
[5,1,1,1]                 => 120
[4,4]                     => 576
[4,3,1]                   => 144
[4,2,2]                   => 96
[4,2,1,1]                 => 48
[4,1,1,1,1]               => 24
[3,3,2]                   => 72
[3,3,1,1]                 => 36
[3,2,2,1]                 => 24
[3,2,1,1,1]               => 12
[3,1,1,1,1,1]             => 6
[2,2,2,2]                 => 16
[2,2,2,1,1]               => 8
[2,2,1,1,1,1]             => 4
[2,1,1,1,1,1,1]           => 2
[1,1,1,1,1,1,1,1]         => 1
[9]                       => 362880
[8,1]                     => 40320
[7,2]                     => 10080
[7,1,1]                   => 5040
[6,3]                     => 4320
[6,2,1]                   => 1440
[6,1,1,1]                 => 720
[5,4]                     => 2880
[5,3,1]                   => 720
[5,2,2]                   => 480
[5,2,1,1]                 => 240
[5,1,1,1,1]               => 120
[4,4,1]                   => 576
[4,3,2]                   => 288
[4,3,1,1]                 => 144
[4,2,2,1]                 => 96
[4,2,1,1,1]               => 48
[4,1,1,1,1,1]             => 24
[3,3,3]                   => 216
[3,3,2,1]                 => 72
[3,3,1,1,1]               => 36
[3,2,2,2]                 => 48
[3,2,2,1,1]               => 24
[3,2,1,1,1,1]             => 12
[3,1,1,1,1,1,1]           => 6
[2,2,2,2,1]               => 16
[2,2,2,1,1,1]             => 8
[2,2,1,1,1,1,1]           => 4
[2,1,1,1,1,1,1,1]         => 2
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 3628800
[9,1]                     => 362880
[8,2]                     => 80640
[8,1,1]                   => 40320
[7,3]                     => 30240
[7,2,1]                   => 10080
[7,1,1,1]                 => 5040
[6,4]                     => 17280
[6,3,1]                   => 4320
[6,2,2]                   => 2880
[6,2,1,1]                 => 1440
[6,1,1,1,1]               => 720
[5,5]                     => 14400
[5,4,1]                   => 2880
[5,3,2]                   => 1440
[5,3,1,1]                 => 720
[5,2,2,1]                 => 480
[5,2,1,1,1]               => 240
[5,1,1,1,1,1]             => 120
[4,4,2]                   => 1152
[4,4,1,1]                 => 576
[4,3,3]                   => 864
[4,3,2,1]                 => 288
[4,3,1,1,1]               => 144
[4,2,2,2]                 => 192
[4,2,2,1,1]               => 96
[4,2,1,1,1,1]             => 48
[4,1,1,1,1,1,1]           => 24
[3,3,3,1]                 => 216
[3,3,2,2]                 => 144
[3,3,2,1,1]               => 72
[3,3,1,1,1,1]             => 36
[3,2,2,2,1]               => 48
[3,2,2,1,1,1]             => 24
[3,2,1,1,1,1,1]           => 12
[3,1,1,1,1,1,1,1]         => 6
[2,2,2,2,2]               => 32
[2,2,2,2,1,1]             => 16
[2,2,2,1,1,1,1]           => 8
[2,2,1,1,1,1,1,1]         => 4
[2,1,1,1,1,1,1,1,1]       => 2
[1,1,1,1,1,1,1,1,1,1]     => 1
[11]                      => 39916800
[10,1]                    => 3628800
[9,2]                     => 725760
[9,1,1]                   => 362880
[8,3]                     => 241920
[8,2,1]                   => 80640
[8,1,1,1]                 => 40320
[7,4]                     => 120960
[7,3,1]                   => 30240
[7,2,2]                   => 20160
[7,2,1,1]                 => 10080
[7,1,1,1,1]               => 5040
[6,5]                     => 86400
[6,4,1]                   => 17280
[6,3,2]                   => 8640
[6,3,1,1]                 => 4320
[6,2,2,1]                 => 2880
[6,2,1,1,1]               => 1440
[6,1,1,1,1,1]             => 720
[5,5,1]                   => 14400
[5,4,2]                   => 5760
[5,4,1,1]                 => 2880
[5,3,3]                   => 4320
[5,3,2,1]                 => 1440
[5,3,1,1,1]               => 720
[5,2,2,2]                 => 960
[5,2,2,1,1]               => 480
[5,2,1,1,1,1]             => 240
[5,1,1,1,1,1,1]           => 120
[4,4,3]                   => 3456
[4,4,2,1]                 => 1152
[4,4,1,1,1]               => 576
[4,3,3,1]                 => 864
[4,3,2,2]                 => 576
[4,3,2,1,1]               => 288
[4,3,1,1,1,1]             => 144
[4,2,2,2,1]               => 192
[4,2,2,1,1,1]             => 96
[4,2,1,1,1,1,1]           => 48
[4,1,1,1,1,1,1,1]         => 24
[3,3,3,2]                 => 432
[3,3,3,1,1]               => 216
[3,3,2,2,1]               => 144
[3,3,2,1,1,1]             => 72
[3,3,1,1,1,1,1]           => 36
[3,2,2,2,2]               => 96
[3,2,2,2,1,1]             => 48
[3,2,2,1,1,1,1]           => 24
[3,2,1,1,1,1,1,1]         => 12
[3,1,1,1,1,1,1,1,1]       => 6
[2,2,2,2,2,1]             => 32
[2,2,2,2,1,1,1]           => 16
[2,2,2,1,1,1,1,1]         => 8
[2,2,1,1,1,1,1,1,1]       => 4
[2,1,1,1,1,1,1,1,1,1]     => 2
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 479001600
[11,1]                    => 39916800
[10,2]                    => 7257600
[10,1,1]                  => 3628800
[9,3]                     => 2177280
[9,2,1]                   => 725760
[9,1,1,1]                 => 362880
[8,4]                     => 967680
[8,3,1]                   => 241920
[8,2,2]                   => 161280
[8,2,1,1]                 => 80640
[8,1,1,1,1]               => 40320
[7,5]                     => 604800
[7,4,1]                   => 120960
[7,3,2]                   => 60480
[7,3,1,1]                 => 30240
[7,2,2,1]                 => 20160
[7,2,1,1,1]               => 10080
[7,1,1,1,1,1]             => 5040
[6,6]                     => 518400
[6,5,1]                   => 86400
[6,4,2]                   => 34560
[6,4,1,1]                 => 17280
[6,3,3]                   => 25920
[6,3,2,1]                 => 8640
[6,3,1,1,1]               => 4320
[6,2,2,2]                 => 5760
[6,2,2,1,1]               => 2880
[6,2,1,1,1,1]             => 1440
[6,1,1,1,1,1,1]           => 720
[5,5,2]                   => 28800
[5,5,1,1]                 => 14400
[5,4,3]                   => 17280
[5,4,2,1]                 => 5760
[5,4,1,1,1]               => 2880
[5,3,3,1]                 => 4320
[5,3,2,2]                 => 2880
[5,3,2,1,1]               => 1440
[5,3,1,1,1,1]             => 720
[5,2,2,2,1]               => 960
[5,2,2,1,1,1]             => 480
[5,2,1,1,1,1,1]           => 240
[5,1,1,1,1,1,1,1]         => 120
[4,4,4]                   => 13824
[4,4,3,1]                 => 3456
[4,4,2,2]                 => 2304
[4,4,2,1,1]               => 1152
[4,4,1,1,1,1]             => 576
[4,3,3,2]                 => 1728
[4,3,3,1,1]               => 864
[4,3,2,2,1]               => 576
[4,3,2,1,1,1]             => 288
[4,3,1,1,1,1,1]           => 144
[4,2,2,2,2]               => 384
[4,2,2,2,1,1]             => 192
[4,2,2,1,1,1,1]           => 96
[4,2,1,1,1,1,1,1]         => 48
[4,1,1,1,1,1,1,1,1]       => 24
[3,3,3,3]                 => 1296
[3,3,3,2,1]               => 432
[3,3,3,1,1,1]             => 216
[3,3,2,2,2]               => 288
[3,3,2,2,1,1]             => 144
[3,3,2,1,1,1,1]           => 72
[3,3,1,1,1,1,1,1]         => 36
[3,2,2,2,2,1]             => 96
[3,2,2,2,1,1,1]           => 48
[3,2,2,1,1,1,1,1]         => 24
[3,2,1,1,1,1,1,1,1]       => 12
[3,1,1,1,1,1,1,1,1,1]     => 6
[2,2,2,2,2,2]             => 64
[2,2,2,2,2,1,1]           => 32
[2,2,2,2,1,1,1,1]         => 16
[2,2,2,1,1,1,1,1,1]       => 8
[2,2,1,1,1,1,1,1,1,1]     => 4
[2,1,1,1,1,1,1,1,1,1,1]   => 2
[1,1,1,1,1,1,1,1,1,1,1,1] => 1

-----------------------------------------------------------------------------
Created: Mar 07, 2017 at 09:36 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Mar 07, 2017 at 09:36 by Martin Rubey