*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000704

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of semistandard tableaux on a given integer partition with minimal maximal entry.

This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of [[SemistandardTableaux|semistandard tableaux]] of shape $\lambda$ with maximal entry $k$.

Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly,
$$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$
where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.

See [Theorem 6.3, 1] for details.

-----------------------------------------------------------------------------
References: [1]   Fulton, W., Harris, J. Representation theory [[MathSciNet:1153249]]

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return SemistandardTableaux(shape=L,max_entry=len(L)).cardinality()

-----------------------------------------------------------------------------
Statistic values:

[2]                       => 1
[1,1]                     => 1
[3]                       => 1
[2,1]                     => 2
[1,1,1]                   => 1
[4]                       => 1
[3,1]                     => 3
[2,2]                     => 1
[2,1,1]                   => 3
[1,1,1,1]                 => 1
[5]                       => 1
[4,1]                     => 4
[3,2]                     => 2
[3,1,1]                   => 6
[2,2,1]                   => 3
[2,1,1,1]                 => 4
[1,1,1,1,1]               => 1
[6]                       => 1
[5,1]                     => 5
[4,2]                     => 3
[4,1,1]                   => 10
[3,3]                     => 1
[3,2,1]                   => 8
[3,1,1,1]                 => 10
[2,2,2]                   => 1
[2,2,1,1]                 => 6
[2,1,1,1,1]               => 5
[1,1,1,1,1,1]             => 1
[7]                       => 1
[6,1]                     => 6
[5,2]                     => 4
[5,1,1]                   => 15
[4,3]                     => 2
[4,2,1]                   => 15
[4,1,1,1]                 => 20
[3,3,1]                   => 6
[3,2,2]                   => 3
[3,2,1,1]                 => 20
[3,1,1,1,1]               => 15
[2,2,2,1]                 => 4
[2,2,1,1,1]               => 10
[2,1,1,1,1,1]             => 6
[1,1,1,1,1,1,1]           => 1
[8]                       => 1
[7,1]                     => 7
[6,2]                     => 5
[6,1,1]                   => 21
[5,3]                     => 3
[5,2,1]                   => 24
[5,1,1,1]                 => 35
[4,4]                     => 1
[4,3,1]                   => 15
[4,2,2]                   => 6
[4,2,1,1]                 => 45
[4,1,1,1,1]               => 35
[3,3,2]                   => 3
[3,3,1,1]                 => 20
[3,2,2,1]                 => 15
[3,2,1,1,1]               => 40
[3,1,1,1,1,1]             => 21
[2,2,2,2]                 => 1
[2,2,2,1,1]               => 10
[2,2,1,1,1,1]             => 15
[2,1,1,1,1,1,1]           => 7
[1,1,1,1,1,1,1,1]         => 1
[9]                       => 1
[8,1]                     => 8
[7,2]                     => 6
[7,1,1]                   => 28
[6,3]                     => 4
[6,2,1]                   => 35
[6,1,1,1]                 => 56
[5,4]                     => 2
[5,3,1]                   => 27
[5,2,2]                   => 10
[5,2,1,1]                 => 84
[5,1,1,1,1]               => 70
[4,4,1]                   => 10
[4,3,2]                   => 8
[4,3,1,1]                 => 60
[4,2,2,1]                 => 36
[4,2,1,1,1]               => 105
[4,1,1,1,1,1]             => 56
[3,3,3]                   => 1
[3,3,2,1]                 => 20
[3,3,1,1,1]               => 50
[3,2,2,2]                 => 4
[3,2,2,1,1]               => 45
[3,2,1,1,1,1]             => 70
[3,1,1,1,1,1,1]           => 28
[2,2,2,2,1]               => 5
[2,2,2,1,1,1]             => 20
[2,2,1,1,1,1,1]           => 21
[2,1,1,1,1,1,1,1]         => 8
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 1
[9,1]                     => 9
[8,2]                     => 7
[8,1,1]                   => 36
[7,3]                     => 5
[7,2,1]                   => 48
[7,1,1,1]                 => 84
[6,4]                     => 3
[6,3,1]                   => 42
[6,2,2]                   => 15
[6,2,1,1]                 => 140
[6,1,1,1,1]               => 126
[5,5]                     => 1
[5,4,1]                   => 24
[5,3,2]                   => 15
[5,3,1,1]                 => 126
[5,2,2,1]                 => 70
[5,2,1,1,1]               => 224
[5,1,1,1,1,1]             => 126
[4,4,2]                   => 6
[4,4,1,1]                 => 50
[4,3,3]                   => 3
[4,3,2,1]                 => 64
[4,3,1,1,1]               => 175
[4,2,2,2]                 => 10
[4,2,2,1,1]               => 126
[4,2,1,1,1,1]             => 210
[4,1,1,1,1,1,1]           => 84
[3,3,3,1]                 => 10
[3,3,2,2]                 => 6
[3,3,2,1,1]               => 75
[3,3,1,1,1,1]             => 105
[3,2,2,2,1]               => 24
[3,2,2,1,1,1]             => 105
[3,2,1,1,1,1,1]           => 112
[3,1,1,1,1,1,1,1]         => 36
[2,2,2,2,2]               => 1
[2,2,2,2,1,1]             => 15
[2,2,2,1,1,1,1]           => 35
[2,2,1,1,1,1,1,1]         => 28
[2,1,1,1,1,1,1,1,1]       => 9
[1,1,1,1,1,1,1,1,1,1]     => 1
[11]                      => 1
[10,1]                    => 10
[9,2]                     => 8
[9,1,1]                   => 45
[8,3]                     => 6
[8,2,1]                   => 63
[8,1,1,1]                 => 120
[7,4]                     => 4
[7,3,1]                   => 60
[7,2,2]                   => 21
[7,2,1,1]                 => 216
[7,1,1,1,1]               => 210
[6,5]                     => 2
[6,4,1]                   => 42
[6,3,2]                   => 24
[6,3,1,1]                 => 224
[6,2,2,1]                 => 120
[6,2,1,1,1]               => 420
[6,1,1,1,1,1]             => 252
[5,5,1]                   => 15
[5,4,2]                   => 15
[5,4,1,1]                 => 140
[5,3,3]                   => 6
[5,3,2,1]                 => 140
[5,3,1,1,1]               => 420
[5,2,2,2]                 => 20
[5,2,2,1,1]               => 280
[5,2,1,1,1,1]             => 504
[5,1,1,1,1,1,1]           => 210
[4,4,3]                   => 3
[4,4,2,1]                 => 60
[4,4,1,1,1]               => 175
[4,3,3,1]                 => 36
[4,3,2,2]                 => 20
[4,3,2,1,1]               => 280
[4,3,1,1,1,1]             => 420
[4,2,2,2,1]               => 70
[4,2,2,1,1,1]             => 336
[4,2,1,1,1,1,1]           => 378
[4,1,1,1,1,1,1,1]         => 120
[3,3,3,2]                 => 4
[3,3,3,1,1]               => 50
[3,3,2,2,1]               => 45
[3,3,2,1,1,1]             => 210
[3,3,1,1,1,1,1]           => 196
[3,2,2,2,2]               => 5
[3,2,2,2,1,1]             => 84
[3,2,2,1,1,1,1]           => 210
[3,2,1,1,1,1,1,1]         => 168
[3,1,1,1,1,1,1,1,1]       => 45
[2,2,2,2,2,1]             => 6
[2,2,2,2,1,1,1]           => 35
[2,2,2,1,1,1,1,1]         => 56
[2,2,1,1,1,1,1,1,1]       => 36
[2,1,1,1,1,1,1,1,1,1]     => 10
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 1
[11,1]                    => 11
[10,2]                    => 9
[10,1,1]                  => 55
[9,3]                     => 7
[9,2,1]                   => 80
[9,1,1,1]                 => 165
[8,4]                     => 5
[8,3,1]                   => 81
[8,2,2]                   => 28
[8,2,1,1]                 => 315
[8,1,1,1,1]               => 330
[7,5]                     => 3
[7,4,1]                   => 64
[7,3,2]                   => 35
[7,3,1,1]                 => 360
[7,2,2,1]                 => 189
[7,2,1,1,1]               => 720
[7,1,1,1,1,1]             => 462
[6,6]                     => 1
[6,5,1]                   => 35
[6,4,2]                   => 27
[6,4,1,1]                 => 280
[6,3,3]                   => 10
[6,3,2,1]                 => 256
[6,3,1,1,1]               => 840
[6,2,2,2]                 => 35
[6,2,2,1,1]               => 540
[6,2,1,1,1,1]             => 1050
[6,1,1,1,1,1,1]           => 462
[5,5,2]                   => 10
[5,5,1,1]                 => 105
[5,4,3]                   => 8
[5,4,2,1]                 => 175
[5,4,1,1,1]               => 560
[5,3,3,1]                 => 84
[5,3,2,2]                 => 45
[5,3,2,1,1]               => 700
[5,3,1,1,1,1]             => 1134
[5,2,2,2,1]               => 160
[5,2,2,1,1,1]             => 840
[5,2,1,1,1,1,1]           => 1008
[5,1,1,1,1,1,1,1]         => 330
[4,4,4]                   => 1
[4,4,3,1]                 => 45
[4,4,2,2]                 => 20
[4,4,2,1,1]               => 315
[4,4,1,1,1,1]             => 490
[4,3,3,2]                 => 15
[4,3,3,1,1]               => 210
[4,3,2,2,1]               => 175
[4,3,2,1,1,1]             => 896
[4,3,1,1,1,1,1]           => 882
[4,2,2,2,2]               => 15
[4,2,2,2,1,1]             => 280
[4,2,2,1,1,1,1]           => 756
[4,2,1,1,1,1,1,1]         => 630
[4,1,1,1,1,1,1,1,1]       => 165
[3,3,3,3]                 => 1
[3,3,3,2,1]               => 40
[3,3,3,1,1,1]             => 175
[3,3,2,2,2]               => 10
[3,3,2,2,1,1]             => 189
[3,3,2,1,1,1,1]           => 490
[3,3,1,1,1,1,1,1]         => 336
[3,2,2,2,2,1]             => 35
[3,2,2,2,1,1,1]           => 224
[3,2,2,1,1,1,1,1]         => 378
[3,2,1,1,1,1,1,1,1]       => 240
[3,1,1,1,1,1,1,1,1,1]     => 55
[2,2,2,2,2,2]             => 1
[2,2,2,2,2,1,1]           => 21
[2,2,2,2,1,1,1,1]         => 70
[2,2,2,1,1,1,1,1,1]       => 84
[2,2,1,1,1,1,1,1,1,1]     => 45
[2,1,1,1,1,1,1,1,1,1,1]   => 11
[1,1,1,1,1,1,1,1,1,1,1,1] => 1

-----------------------------------------------------------------------------
Created: Mar 07, 2017 at 09:15 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Mar 07, 2017 at 09:15 by Christian Stump