Identifier
Values
[1,0] => [1,0] => [1,0] => [2,1] => 1
[1,0,1,0] => [1,0,1,0] => [1,0,1,0] => [3,1,2] => 2
[1,1,0,0] => [1,1,0,0] => [1,1,0,0] => [2,3,1] => 1
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => [4,1,2,3] => 3
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [4,3,1,2] => 2
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => [2,4,1,3] => 2
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [4,3,1,2] => 2
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => [2,3,4,1] => 1
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [5,1,2,3,4] => 4
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [5,4,1,2,3] => 3
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [5,3,1,2,4] => 3
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [5,4,1,2,3] => 3
[1,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => 2
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [2,5,1,3,4] => 3
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0] => [2,5,4,1,3] => 2
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [5,3,1,2,4] => 3
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0] => [2,5,4,1,3] => 2
[1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => 2
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => [2,3,5,1,4] => 2
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0] => [2,5,4,1,3] => 2
[1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => 2
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [6,1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => 4
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [6,4,1,2,3,5] => 4
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => 4
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [6,5,4,1,2,3] => 3
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [6,3,1,2,4,5] => 4
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => 3
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [6,4,1,2,3,5] => 4
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => 3
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [6,5,4,1,2,3] => 3
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0] => [6,3,4,1,2,5] => 3
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => 3
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [6,5,4,1,2,3] => 3
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => 2
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [2,6,1,3,4,5] => 4
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,0] => [2,6,5,1,3,4] => 3
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [2,6,4,1,3,5] => 3
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,0] => [2,6,5,1,3,4] => 3
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => 2
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [6,3,1,2,4,5] => 4
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => 3
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [2,6,4,1,3,5] => 3
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => 3
[1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => 2
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0] => [6,3,4,1,2,5] => 3
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => 3
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => 2
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [2,3,6,1,4,5] => 3
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [2,6,4,1,3,5] => 3
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => 2
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0] => [6,3,4,1,2,5] => 3
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => 2
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => 2
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => 2
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => 2
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => 2
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [7,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [7,6,1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [7,6,1,2,3,4,5] => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [7,4,1,2,3,5,6] => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [7,6,4,5,1,2,3] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [7,3,1,2,4,5,6] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [7,4,1,2,3,5,6] => 5
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [7,6,4,5,1,2,3] => 3
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [7,3,4,1,2,5,6] => 4
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [7,6,4,5,1,2,3] => 3
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [7,6,4,5,1,2,3] => 3
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,7,1,3,4,5,6] => 5
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [2,6,7,1,3,4,5] => 4
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [2,6,7,1,3,4,5] => 4
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [7,3,1,2,4,5,6] => 5
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [7,3,4,1,2,5,6] => 4
[1,1,1,0,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [7,3,4,1,2,5,6] => 4
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [2,3,4,7,1,5,6] => 3
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [2,3,4,5,7,1,6] => 2
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [8,1,2,3,4,5,6,7] => 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,7,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,7,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [6,7,8,1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [6,7,8,1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [6,7,8,1,2,3,4,5] => 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [8,4,1,2,3,5,6,7] => 6
[1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [8,7,4,5,6,1,2,3] => 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [8,3,1,2,4,5,6,7] => 6
[1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [8,4,1,2,3,5,6,7] => 6
[1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [8,7,4,5,6,1,2,3] => 3
[1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [8,7,4,5,6,1,2,3] => 3
[1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [8,7,4,5,6,1,2,3] => 3
[1,0,1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [8,7,4,5,6,1,2,3] => 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [2,8,1,3,4,5,6,7] => 6
[1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [8,3,1,2,4,5,6,7] => 6
[1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => 2
>>> Load all 128 entries. <<<
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,1] => 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [9,1,2,3,4,5,6,7,8] => 8
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,9,1,2,3,4,5,6,7] => 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,9,1,2,3,4,5,6,7] => 7
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [9,7,8,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [9,7,8,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [9,7,8,1,2,3,4,5,6] => 6
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0] => [9,3,1,2,4,5,6,7,8] => 7
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,9,1,3,4,5,6,7,8] => 7
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0] => [9,3,1,2,4,5,6,7,8] => 7
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [2,3,4,5,6,7,9,1,8] => 2
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,1] => 1
[] => [] => [] => [1] => 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,1] => 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [10,1,2,3,4,5,6,7,8,9] => 9
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [10,9,1,2,3,4,5,6,7,8] => 8
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [10,9,1,2,3,4,5,6,7,8] => 8
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [11,1,2,3,4,5,6,7,8,9,10] => 10
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [10,9,8,1,2,3,4,5,6,7] => 7
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [10,9,8,1,2,3,4,5,6,7] => 7
[1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0] => [7,8,9,10,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0] => [7,8,9,10,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0] => [7,8,9,10,1,2,3,4,5,6] => 6
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,10,1,3,4,5,6,7,8,9] => 8
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,11,1] => 1
[1,0,1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0] => [7,8,9,10,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [10,9,8,1,2,3,4,5,6,7] => 7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of deficiencies of a permutation.
This is defined as
$$\operatorname{dec}(\sigma)=\#\{i:\sigma(i) < i\}.$$
The number of exceedances is St000155The number of exceedances (also excedences) of a permutation..
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
Map
switch returns and last double rise
Description
An alternative to the Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.