Identifier
-
Mp00275:
Graphs
—to edge-partition of connected components⟶
Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000684: Dyck paths ⟶ ℤ
Values
([(0,1)],2) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(1,2)],3) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(0,2),(1,2)],3) => [2] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 2
([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(2,3)],4) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(1,3),(2,3)],4) => [2] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 2
([(0,3),(1,3),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,3),(1,2)],4) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(0,3),(1,2),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(1,2),(1,3),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(3,4)],5) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(2,4),(3,4)],5) => [2] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 2
([(1,4),(2,4),(3,4)],5) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,4),(1,4),(2,4),(3,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(1,4),(2,3)],5) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(1,4),(2,3),(3,4)],5) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,1),(2,4),(3,4)],5) => [2,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 1
([(2,3),(2,4),(3,4)],5) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,4),(1,4),(2,3),(3,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(1,4),(2,3),(2,4),(3,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0] => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(4,5)],6) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(3,5),(4,5)],6) => [2] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 2
([(2,5),(3,5),(4,5)],6) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(1,5),(2,5),(3,5),(4,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(2,5),(3,4)],6) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(2,5),(3,4),(4,5)],6) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(1,2),(3,5),(4,5)],6) => [2,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 1
([(3,4),(3,5),(4,5)],6) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(1,5),(2,5),(3,4),(4,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,1),(2,5),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0] => 3
([(2,5),(3,4),(3,5),(4,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => 2
([(1,5),(2,4),(3,4),(3,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0] => 3
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0] => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2] => [1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,0,1,1,0,0,0,0,0] => 3
([(5,6)],7) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(4,6),(5,6)],7) => [2] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 2
([(3,6),(4,6),(5,6)],7) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(2,6),(3,6),(4,6),(5,6)],7) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => 2
([(3,6),(4,5)],7) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(3,6),(4,5),(5,6)],7) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
>>> Load all 185 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The global dimension of the LNakayama algebra associated to a Dyck path.
An n-LNakayama algebra is a quiver algebra with a directed line as a connected quiver with $n$ points for $n \geq 2$. Number those points from the left to the right by $0,1,\ldots,n-1$.
The algebra is then uniquely determined by the dimension $c_i$ of the projective indecomposable modules at point $i$. Such algebras are then uniquely determined by lists of the form $[c_0,c_1,...,c_{n-1}]$ with the conditions: $c_{n-1}=1$ and $c_i -1 \leq c_{i+1}$ for all $i$. The number of such algebras is then the $n-1$-st Catalan number $C_{n-1}$.
One can get also an interpretation with Dyck paths by associating the top boundary of the Auslander-Reiten quiver (which is a Dyck path) to those algebras. Example: [3,4,3,3,2,1] corresponds to the Dyck path [1,1,0,1,1,0,0,1,0,0].
Conjecture: that there is an explicit bijection between $n$-LNakayama algebras with global dimension bounded by $m$ and Dyck paths with height at most $m$.
Examples:
An n-LNakayama algebra is a quiver algebra with a directed line as a connected quiver with $n$ points for $n \geq 2$. Number those points from the left to the right by $0,1,\ldots,n-1$.
The algebra is then uniquely determined by the dimension $c_i$ of the projective indecomposable modules at point $i$. Such algebras are then uniquely determined by lists of the form $[c_0,c_1,...,c_{n-1}]$ with the conditions: $c_{n-1}=1$ and $c_i -1 \leq c_{i+1}$ for all $i$. The number of such algebras is then the $n-1$-st Catalan number $C_{n-1}$.
One can get also an interpretation with Dyck paths by associating the top boundary of the Auslander-Reiten quiver (which is a Dyck path) to those algebras. Example: [3,4,3,3,2,1] corresponds to the Dyck path [1,1,0,1,1,0,0,1,0,0].
Conjecture: that there is an explicit bijection between $n$-LNakayama algebras with global dimension bounded by $m$ and Dyck paths with height at most $m$.
Examples:
- For $m=2$, the number of Dyck paths with global dimension at most $m$ starts for $n \geq 2$ with 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192.
- For $m=3$, the number of Dyck paths with global dimension at most $m$ starts for $n \geq 2$ with 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418.
Map
to edge-partition of connected components
Description
Sends a graph to the partition recording the number of edges in its connected components.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
peaks-to-valleys
Description
Return the path that has a valley wherever the original path has a peak of height at least one.
More precisely, the height of a valley in the image is the height of the corresponding peak minus $2$.
This is also (the inverse of) rowmotion on Dyck paths regarded as order ideals in the triangular poset.
More precisely, the height of a valley in the image is the height of the corresponding peak minus $2$.
This is also (the inverse of) rowmotion on Dyck paths regarded as order ideals in the triangular poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!