*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000621

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even.

To be precise, this is given for a partition $\lambda \vdash n$ by the number of standard tableaux $T$ of shape $\lambda$ such that $\min\big( \operatorname{Des}(T) \cup \{n\} \big)$ is even.
This notion was used in [1, Proposition 2.3], see also [2, Theorem 1.1].

The case of an odd minimum is [[St000620]].

-----------------------------------------------------------------------------
References: [1]   Reiner, V., Webb, P. The combinatorics of the bar resolution in group cohomology [[MathSciNet:2043333]]
[2]   Athanasiadis, C. A. The symmetric group action on rank-selected posets of injective words [[arXiv:1606.03829]]

-----------------------------------------------------------------------------
Code:
def statistic(L):
    n = sum(L)
    return sum(1 for SYT in StandardTableaux(L) if is_even(min( SYT.standard_descents() + [n] )) )


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 1
[1,1]                     => 0
[3]                       => 0
[2,1]                     => 1
[1,1,1]                   => 0
[4]                       => 1
[3,1]                     => 1
[2,2]                     => 1
[2,1,1]                   => 1
[1,1,1,1]                 => 0
[5]                       => 0
[4,1]                     => 2
[3,2]                     => 2
[3,1,1]                   => 2
[2,2,1]                   => 2
[2,1,1,1]                 => 1
[1,1,1,1,1]               => 0
[6]                       => 1
[5,1]                     => 2
[4,2]                     => 4
[4,1,1]                   => 4
[3,3]                     => 2
[3,2,1]                   => 6
[3,1,1,1]                 => 3
[2,2,2]                   => 2
[2,2,1,1]                 => 3
[2,1,1,1,1]               => 1
[1,1,1,1,1,1]             => 0
[7]                       => 0
[6,1]                     => 3
[5,2]                     => 6
[5,1,1]                   => 6
[4,3]                     => 6
[4,2,1]                   => 14
[4,1,1,1]                 => 7
[3,3,1]                   => 8
[3,2,2]                   => 8
[3,2,1,1]                 => 12
[3,1,1,1,1]               => 4
[2,2,2,1]                 => 5
[2,2,1,1,1]               => 4
[2,1,1,1,1,1]             => 1
[1,1,1,1,1,1,1]           => 0
[8]                       => 1
[7,1]                     => 3
[6,2]                     => 9
[6,1,1]                   => 9
[5,3]                     => 12
[5,2,1]                   => 26
[5,1,1,1]                 => 13
[4,4]                     => 6
[4,3,1]                   => 28
[4,2,2]                   => 22
[4,2,1,1]                 => 33
[4,1,1,1,1]               => 11
[3,3,2]                   => 16
[3,3,1,1]                 => 20
[3,2,2,1]                 => 25
[3,2,1,1,1]               => 20
[3,1,1,1,1,1]             => 5
[2,2,2,2]                 => 5
[2,2,2,1,1]               => 9
[2,2,1,1,1,1]             => 5
[2,1,1,1,1,1,1]           => 1
[1,1,1,1,1,1,1,1]         => 0
[9]                       => 0
[8,1]                     => 4
[7,2]                     => 12
[7,1,1]                   => 12
[6,3]                     => 21
[6,2,1]                   => 44
[6,1,1,1]                 => 22
[5,4]                     => 18
[5,3,1]                   => 66
[5,2,2]                   => 48
[5,2,1,1]                 => 72
[5,1,1,1,1]               => 24
[4,4,1]                   => 34
[4,3,2]                   => 66
[4,3,1,1]                 => 81
[4,2,2,1]                 => 80
[4,2,1,1,1]               => 64
[4,1,1,1,1,1]             => 16
[3,3,3]                   => 16
[3,3,2,1]                 => 61
[3,3,1,1,1]               => 40
[3,2,2,2]                 => 30
[3,2,2,1,1]               => 54
[3,2,1,1,1,1]             => 30
[3,1,1,1,1,1,1]           => 6
[2,2,2,2,1]               => 14
[2,2,2,1,1,1]             => 14
[2,2,1,1,1,1,1]           => 6
[2,1,1,1,1,1,1,1]         => 1
[1,1,1,1,1,1,1,1,1]       => 0
[10]                      => 1
[9,1]                     => 4
[8,2]                     => 16
[8,1,1]                   => 16
[7,3]                     => 33
[7,2,1]                   => 68
[7,1,1,1]                 => 34
[6,4]                     => 39
[6,3,1]                   => 131
[6,2,2]                   => 92
[6,2,1,1]                 => 138
[6,1,1,1,1]               => 46
[5,5]                     => 18
[5,4,1]                   => 118
[5,3,2]                   => 180
[5,3,1,1]                 => 219
[5,2,2,1]                 => 200
[5,2,1,1,1]               => 160
[5,1,1,1,1,1]             => 40
[4,4,2]                   => 100
[4,4,1,1]                 => 115
[4,3,3]                   => 82
[4,3,2,1]                 => 288
[4,3,1,1,1]               => 185
[4,2,2,2]                 => 110
[4,2,2,1,1]               => 198
[4,2,1,1,1,1]             => 110
[4,1,1,1,1,1,1]           => 22
[3,3,3,1]                 => 77
[3,3,2,2]                 => 91
[3,3,2,1,1]               => 155
[3,3,1,1,1,1]             => 70
[3,2,2,2,1]               => 98
[3,2,2,1,1,1]             => 98
[3,2,1,1,1,1,1]           => 42
[3,1,1,1,1,1,1,1]         => 7
[2,2,2,2,2]               => 14
[2,2,2,2,1,1]             => 28
[2,2,2,1,1,1,1]           => 20
[2,2,1,1,1,1,1,1]         => 7
[2,1,1,1,1,1,1,1,1]       => 1
[1,1,1,1,1,1,1,1,1,1]     => 0
[11]                      => 0
[10,1]                    => 5
[9,2]                     => 20
[9,1,1]                   => 20
[8,3]                     => 49
[8,2,1]                   => 100
[8,1,1,1]                 => 50
[7,4]                     => 72
[7,3,1]                   => 232
[7,2,2]                   => 160
[7,2,1,1]                 => 240
[7,1,1,1,1]               => 80
[6,5]                     => 57
[6,4,1]                   => 288
[6,3,2]                   => 403
[6,3,1,1]                 => 488
[6,2,2,1]                 => 430
[6,2,1,1,1]               => 344
[6,1,1,1,1,1]             => 86
[5,5,1]                   => 136
[5,4,2]                   => 398
[5,4,1,1]                 => 452
[5,3,3]                   => 262
[5,3,2,1]                 => 887
[5,3,1,1,1]               => 564
[5,2,2,2]                 => 310
[5,2,2,1,1]               => 558
[5,2,1,1,1,1]             => 310
[5,1,1,1,1,1,1]           => 62
[4,4,3]                   => 182
[4,4,2,1]                 => 503
[4,4,1,1,1]               => 300
[4,3,3,1]                 => 447
[4,3,2,2]                 => 489
[4,3,2,1,1]               => 826
[4,3,1,1,1,1]             => 365
[4,2,2,2,1]               => 406
[4,2,2,1,1,1]             => 406
[4,2,1,1,1,1,1]           => 174
[4,1,1,1,1,1,1,1]         => 29
[3,3,3,2]                 => 168
[3,3,3,1,1]               => 232
[3,3,2,2,1]               => 344
[3,3,2,1,1,1]             => 323
[3,3,1,1,1,1,1]           => 112
[3,2,2,2,2]               => 112
[3,2,2,2,1,1]             => 224
[3,2,2,1,1,1,1]           => 160
[3,2,1,1,1,1,1,1]         => 56
[3,1,1,1,1,1,1,1,1]       => 8
[2,2,2,2,2,1]             => 42
[2,2,2,2,1,1,1]           => 48
[2,2,2,1,1,1,1,1]         => 27
[2,2,1,1,1,1,1,1,1]       => 8
[2,1,1,1,1,1,1,1,1,1]     => 1
[1,1,1,1,1,1,1,1,1,1,1]   => 0
[12]                      => 1
[11,1]                    => 5
[10,2]                    => 25
[10,1,1]                  => 25
[9,3]                     => 69
[9,2,1]                   => 140
[9,1,1,1]                 => 70
[8,4]                     => 121
[8,3,1]                   => 381
[8,2,2]                   => 260
[8,2,1,1]                 => 390
[8,1,1,1,1]               => 130
[7,5]                     => 129
[7,4,1]                   => 592
[7,3,2]                   => 795
[7,3,1,1]                 => 960
[7,2,2,1]                 => 830
[7,2,1,1,1]               => 664
[7,1,1,1,1,1]             => 166
[6,6]                     => 57
[6,5,1]                   => 481
[6,4,2]                   => 1089
[6,4,1,1]                 => 1228
[6,3,3]                   => 665
[6,3,2,1]                 => 2208
[6,3,1,1,1]               => 1396
[6,2,2,2]                 => 740
[6,2,2,1,1]               => 1332
[6,2,1,1,1,1]             => 740
[6,1,1,1,1,1,1]           => 148
[5,5,2]                   => 534
[5,5,1,1]                 => 588
[5,4,3]                   => 842
[5,4,2,1]                 => 2240
[5,4,1,1,1]               => 1316
[5,3,3,1]                 => 1596
[5,3,2,2]                 => 1686
[5,3,2,1,1]               => 2835
[5,3,1,1,1,1]             => 1239
[5,2,2,2,1]               => 1274
[5,2,2,1,1,1]             => 1274
[5,2,1,1,1,1,1]           => 546
[5,1,1,1,1,1,1,1]         => 91
[4,4,4]                   => 182
[4,4,3,1]                 => 1132
[4,4,2,2]                 => 992
[4,4,2,1,1]               => 1629
[4,4,1,1,1,1]             => 665
[4,3,3,2]                 => 1104
[4,3,3,1,1]               => 1505
[4,3,2,2,1]               => 2065
[4,3,2,1,1,1]             => 1920
[4,3,1,1,1,1,1]           => 651
[4,2,2,2,2]               => 518
[4,2,2,2,1,1]             => 1036
[4,2,2,1,1,1,1]           => 740
[4,2,1,1,1,1,1,1]         => 259
[4,1,1,1,1,1,1,1,1]       => 37
[3,3,3,3]                 => 168
[3,3,3,2,1]               => 744
[3,3,3,1,1,1]             => 555
[3,3,2,2,2]               => 456
[3,3,2,2,1,1]             => 891
[3,3,2,1,1,1,1]           => 595
[3,3,1,1,1,1,1,1]         => 168
[3,2,2,2,2,1]             => 378
[3,2,2,2,1,1,1]           => 432
[3,2,2,1,1,1,1,1]         => 243
[3,2,1,1,1,1,1,1,1]       => 72
[3,1,1,1,1,1,1,1,1,1]     => 9
[2,2,2,2,2,2]             => 42
[2,2,2,2,2,1,1]           => 90
[2,2,2,2,1,1,1,1]         => 75
[2,2,2,1,1,1,1,1,1]       => 35
[2,2,1,1,1,1,1,1,1,1]     => 9
[2,1,1,1,1,1,1,1,1,1,1]   => 1
[1,1,1,1,1,1,1,1,1,1,1,1] => 0

-----------------------------------------------------------------------------
Created: Oct 12, 2016 at 15:26 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Oct 12, 2016 at 15:35 by Christian Stump