*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000620

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd.

To be precise, this is given for a partition $\lambda \vdash n$ by the number of standard tableaux $T$ of shape $\lambda$ such that $\min\big( \operatorname{Des}(T) \cup \{n\} \big)$ is odd.

The case of an even minimum is [[St000621]].

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(L):
    n = sum(L)
    return sum( 1 for SYT in StandardTableaux(L) if is_odd(min( SYT.standard_descents() + [n] )) )


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 0
[1,1]                     => 1
[3]                       => 1
[2,1]                     => 1
[1,1,1]                   => 1
[4]                       => 0
[3,1]                     => 2
[2,2]                     => 1
[2,1,1]                   => 2
[1,1,1,1]                 => 1
[5]                       => 1
[4,1]                     => 2
[3,2]                     => 3
[3,1,1]                   => 4
[2,2,1]                   => 3
[2,1,1,1]                 => 3
[1,1,1,1,1]               => 1
[6]                       => 0
[5,1]                     => 3
[4,2]                     => 5
[4,1,1]                   => 6
[3,3]                     => 3
[3,2,1]                   => 10
[3,1,1,1]                 => 7
[2,2,2]                   => 3
[2,2,1,1]                 => 6
[2,1,1,1,1]               => 4
[1,1,1,1,1,1]             => 1
[7]                       => 1
[6,1]                     => 3
[5,2]                     => 8
[5,1,1]                   => 9
[4,3]                     => 8
[4,2,1]                   => 21
[4,1,1,1]                 => 13
[3,3,1]                   => 13
[3,2,2]                   => 13
[3,2,1,1]                 => 23
[3,1,1,1,1]               => 11
[2,2,2,1]                 => 9
[2,2,1,1,1]               => 10
[2,1,1,1,1,1]             => 5
[1,1,1,1,1,1,1]           => 1
[8]                       => 0
[7,1]                     => 4
[6,2]                     => 11
[6,1,1]                   => 12
[5,3]                     => 16
[5,2,1]                   => 38
[5,1,1,1]                 => 22
[4,4]                     => 8
[4,3,1]                   => 42
[4,2,2]                   => 34
[4,2,1,1]                 => 57
[4,1,1,1,1]               => 24
[3,3,2]                   => 26
[3,3,1,1]                 => 36
[3,2,2,1]                 => 45
[3,2,1,1,1]               => 44
[3,1,1,1,1,1]             => 16
[2,2,2,2]                 => 9
[2,2,2,1,1]               => 19
[2,2,1,1,1,1]             => 15
[2,1,1,1,1,1,1]           => 6
[1,1,1,1,1,1,1,1]         => 1
[9]                       => 1
[8,1]                     => 4
[7,2]                     => 15
[7,1,1]                   => 16
[6,3]                     => 27
[6,2,1]                   => 61
[6,1,1,1]                 => 34
[5,4]                     => 24
[5,3,1]                   => 96
[5,2,2]                   => 72
[5,2,1,1]                 => 117
[5,1,1,1,1]               => 46
[4,4,1]                   => 50
[4,3,2]                   => 102
[4,3,1,1]                 => 135
[4,2,2,1]                 => 136
[4,2,1,1,1]               => 125
[4,1,1,1,1,1]             => 40
[3,3,3]                   => 26
[3,3,2,1]                 => 107
[3,3,1,1,1]               => 80
[3,2,2,2]                 => 54
[3,2,2,1,1]               => 108
[3,2,1,1,1,1]             => 75
[3,1,1,1,1,1,1]           => 22
[2,2,2,2,1]               => 28
[2,2,2,1,1,1]             => 34
[2,2,1,1,1,1,1]           => 21
[2,1,1,1,1,1,1,1]         => 7
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 0
[9,1]                     => 5
[8,2]                     => 19
[8,1,1]                   => 20
[7,3]                     => 42
[7,2,1]                   => 92
[7,1,1,1]                 => 50
[6,4]                     => 51
[6,3,1]                   => 184
[6,2,2]                   => 133
[6,2,1,1]                 => 212
[6,1,1,1,1]               => 80
[5,5]                     => 24
[5,4,1]                   => 170
[5,3,2]                   => 270
[5,3,1,1]                 => 348
[5,2,2,1]                 => 325
[5,2,1,1,1]               => 288
[5,1,1,1,1,1]             => 86
[4,4,2]                   => 152
[4,4,1,1]                 => 185
[4,3,3]                   => 128
[4,3,2,1]                 => 480
[4,3,1,1,1]               => 340
[4,2,2,2]                 => 190
[4,2,2,1,1]               => 369
[4,2,1,1,1,1]             => 240
[4,1,1,1,1,1,1]           => 62
[3,3,3,1]                 => 133
[3,3,2,2]                 => 161
[3,3,2,1,1]               => 295
[3,3,1,1,1,1]             => 155
[3,2,2,2,1]               => 190
[3,2,2,1,1,1]             => 217
[3,2,1,1,1,1,1]           => 118
[3,1,1,1,1,1,1,1]         => 29
[2,2,2,2,2]               => 28
[2,2,2,2,1,1]             => 62
[2,2,2,1,1,1,1]           => 55
[2,2,1,1,1,1,1,1]         => 28
[2,1,1,1,1,1,1,1,1]       => 8
[1,1,1,1,1,1,1,1,1,1]     => 1
[11]                      => 1
[10,1]                    => 5
[9,2]                     => 24
[9,1,1]                   => 25
[8,3]                     => 61
[8,2,1]                   => 131
[8,1,1,1]                 => 70
[7,4]                     => 93
[7,3,1]                   => 318
[7,2,2]                   => 225
[7,2,1,1]                 => 354
[7,1,1,1,1]               => 130
[6,5]                     => 75
[6,4,1]                   => 405
[6,3,2]                   => 587
[6,3,1,1]                 => 744
[6,2,2,1]                 => 670
[6,2,1,1,1]               => 580
[6,1,1,1,1,1]             => 166
[5,5,1]                   => 194
[5,4,2]                   => 592
[5,4,1,1]                 => 703
[5,3,3]                   => 398
[5,3,2,1]                 => 1423
[5,3,1,1,1]               => 976
[5,2,2,2]                 => 515
[5,2,2,1,1]               => 982
[5,2,1,1,1,1]             => 614
[5,1,1,1,1,1,1]           => 148
[4,4,3]                   => 280
[4,4,2,1]                 => 817
[4,4,1,1,1]               => 525
[4,3,3,1]                 => 741
[4,3,2,2]                 => 831
[4,3,2,1,1]               => 1484
[4,3,1,1,1,1]             => 735
[4,2,2,2,1]               => 749
[4,2,2,1,1,1]             => 826
[4,2,1,1,1,1,1]           => 420
[4,1,1,1,1,1,1,1]         => 91
[3,3,3,2]                 => 294
[3,3,3,1,1]               => 428
[3,3,2,2,1]               => 646
[3,3,2,1,1,1]             => 667
[3,3,1,1,1,1,1]           => 273
[3,2,2,2,2]               => 218
[3,2,2,2,1,1]             => 469
[3,2,2,1,1,1,1]           => 390
[3,2,1,1,1,1,1,1]         => 175
[3,1,1,1,1,1,1,1,1]       => 37
[2,2,2,2,2,1]             => 90
[2,2,2,2,1,1,1]           => 117
[2,2,2,1,1,1,1,1]         => 83
[2,2,1,1,1,1,1,1,1]       => 36
[2,1,1,1,1,1,1,1,1,1]     => 9
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 0
[11,1]                    => 6
[10,2]                    => 29
[10,1,1]                  => 30
[9,3]                     => 85
[9,2,1]                   => 180
[9,1,1,1]                 => 95
[8,4]                     => 154
[8,3,1]                   => 510
[8,2,2]                   => 356
[8,2,1,1]                 => 555
[8,1,1,1,1]               => 200
[7,5]                     => 168
[7,4,1]                   => 816
[7,3,2]                   => 1130
[7,3,1,1]                 => 1416
[7,2,2,1]                 => 1249
[7,2,1,1,1]               => 1064
[7,1,1,1,1,1]             => 296
[6,6]                     => 75
[6,5,1]                   => 674
[6,4,2]                   => 1584
[6,4,1,1]                 => 1852
[6,3,3]                   => 985
[6,3,2,1]                 => 3424
[6,3,1,1,1]               => 2300
[6,2,2,2]                 => 1185
[6,2,2,1,1]               => 2232
[6,2,1,1,1,1]             => 1360
[6,1,1,1,1,1,1]           => 314
[5,5,2]                   => 786
[5,5,1,1]                 => 897
[5,4,3]                   => 1270
[5,4,2,1]                 => 3535
[5,4,1,1,1]               => 2204
[5,3,3,1]                 => 2562
[5,3,2,2]                 => 2769
[5,3,2,1,1]               => 4865
[5,3,1,1,1,1]             => 2325
[5,2,2,2,1]               => 2246
[5,2,2,1,1,1]             => 2422
[5,2,1,1,1,1,1]           => 1182
[5,1,1,1,1,1,1,1]         => 239
[4,4,4]                   => 280
[4,4,3,1]                 => 1838
[4,4,2,2]                 => 1648
[4,4,2,1,1]               => 2826
[4,4,1,1,1,1]             => 1260
[4,3,3,2]                 => 1866
[4,3,3,1,1]               => 2653
[4,3,2,2,1]               => 3710
[4,3,2,1,1,1]             => 3712
[4,3,1,1,1,1,1]           => 1428
[4,2,2,2,2]               => 967
[4,2,2,2,1,1]             => 2044
[4,2,2,1,1,1,1]           => 1636
[4,2,1,1,1,1,1,1]         => 686
[4,1,1,1,1,1,1,1,1]       => 128
[3,3,3,3]                 => 294
[3,3,3,2,1]               => 1368
[3,3,3,1,1,1]             => 1095
[3,3,2,2,2]               => 864
[3,3,2,2,1,1]             => 1782
[3,3,2,1,1,1,1]           => 1330
[3,3,1,1,1,1,1,1]         => 448
[3,2,2,2,2,1]             => 777
[3,2,2,2,1,1,1]           => 976
[3,2,2,1,1,1,1,1]         => 648
[3,2,1,1,1,1,1,1,1]       => 248
[3,1,1,1,1,1,1,1,1,1]     => 46
[2,2,2,2,2,2]             => 90
[2,2,2,2,2,1,1]           => 207
[2,2,2,2,1,1,1,1]         => 200
[2,2,2,1,1,1,1,1,1]       => 119
[2,2,1,1,1,1,1,1,1,1]     => 45
[2,1,1,1,1,1,1,1,1,1,1]   => 10
[1,1,1,1,1,1,1,1,1,1,1,1] => 1

-----------------------------------------------------------------------------
Created: Oct 12, 2016 at 15:26 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Oct 12, 2016 at 15:34 by Christian Stump