*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000566

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of ways to select a row of a Ferrers shape and two cells in this row.  Equivalently, if $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ is an integer partition, then the statistic is
$$\frac{1}{2} \sum_{i=0}^m  \lambda_i(\lambda_i -1).$$

-----------------------------------------------------------------------------
References: [1] Xi, N."The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group Sn," , p. 4.  Xi, N. The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group $S_n$ [[arXiv:math/0401430]]
[2]   Lusztig, G. Cells in affine Weyl groups [[MathSciNet:0803338]]

-----------------------------------------------------------------------------
Code:
def statistic(pi):
    return sum(binomial(p, Integer(2)) for p in pi)


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 1
[1,1]                     => 0
[3]                       => 3
[2,1]                     => 1
[1,1,1]                   => 0
[4]                       => 6
[3,1]                     => 3
[2,2]                     => 2
[2,1,1]                   => 1
[1,1,1,1]                 => 0
[5]                       => 10
[4,1]                     => 6
[3,2]                     => 4
[3,1,1]                   => 3
[2,2,1]                   => 2
[2,1,1,1]                 => 1
[1,1,1,1,1]               => 0
[6]                       => 15
[5,1]                     => 10
[4,2]                     => 7
[4,1,1]                   => 6
[3,3]                     => 6
[3,2,1]                   => 4
[3,1,1,1]                 => 3
[2,2,2]                   => 3
[2,2,1,1]                 => 2
[2,1,1,1,1]               => 1
[1,1,1,1,1,1]             => 0
[7]                       => 21
[6,1]                     => 15
[5,2]                     => 11
[5,1,1]                   => 10
[4,3]                     => 9
[4,2,1]                   => 7
[4,1,1,1]                 => 6
[3,3,1]                   => 6
[3,2,2]                   => 5
[3,2,1,1]                 => 4
[3,1,1,1,1]               => 3
[2,2,2,1]                 => 3
[2,2,1,1,1]               => 2
[2,1,1,1,1,1]             => 1
[1,1,1,1,1,1,1]           => 0
[8]                       => 28
[7,1]                     => 21
[6,2]                     => 16
[6,1,1]                   => 15
[5,3]                     => 13
[5,2,1]                   => 11
[5,1,1,1]                 => 10
[4,4]                     => 12
[4,3,1]                   => 9
[4,2,2]                   => 8
[4,2,1,1]                 => 7
[4,1,1,1,1]               => 6
[3,3,2]                   => 7
[3,3,1,1]                 => 6
[3,2,2,1]                 => 5
[3,2,1,1,1]               => 4
[3,1,1,1,1,1]             => 3
[2,2,2,2]                 => 4
[2,2,2,1,1]               => 3
[2,2,1,1,1,1]             => 2
[2,1,1,1,1,1,1]           => 1
[1,1,1,1,1,1,1,1]         => 0
[9]                       => 36
[8,1]                     => 28
[7,2]                     => 22
[7,1,1]                   => 21
[6,3]                     => 18
[6,2,1]                   => 16
[6,1,1,1]                 => 15
[5,4]                     => 16
[5,3,1]                   => 13
[5,2,2]                   => 12
[5,2,1,1]                 => 11
[5,1,1,1,1]               => 10
[4,4,1]                   => 12
[4,3,2]                   => 10
[4,3,1,1]                 => 9
[4,2,2,1]                 => 8
[4,2,1,1,1]               => 7
[4,1,1,1,1,1]             => 6
[3,3,3]                   => 9
[3,3,2,1]                 => 7
[3,3,1,1,1]               => 6
[3,2,2,2]                 => 6
[3,2,2,1,1]               => 5
[3,2,1,1,1,1]             => 4
[3,1,1,1,1,1,1]           => 3
[2,2,2,2,1]               => 4
[2,2,2,1,1,1]             => 3
[2,2,1,1,1,1,1]           => 2
[2,1,1,1,1,1,1,1]         => 1
[1,1,1,1,1,1,1,1,1]       => 0
[10]                      => 45
[9,1]                     => 36
[8,2]                     => 29
[8,1,1]                   => 28
[7,3]                     => 24
[7,2,1]                   => 22
[7,1,1,1]                 => 21
[6,4]                     => 21
[6,3,1]                   => 18
[6,2,2]                   => 17
[6,2,1,1]                 => 16
[6,1,1,1,1]               => 15
[5,5]                     => 20
[5,4,1]                   => 16
[5,3,2]                   => 14
[5,3,1,1]                 => 13
[5,2,2,1]                 => 12
[5,2,1,1,1]               => 11
[5,1,1,1,1,1]             => 10
[4,4,2]                   => 13
[4,4,1,1]                 => 12
[4,3,3]                   => 12
[4,3,2,1]                 => 10
[4,3,1,1,1]               => 9
[4,2,2,2]                 => 9
[4,2,2,1,1]               => 8
[4,2,1,1,1,1]             => 7
[4,1,1,1,1,1,1]           => 6
[3,3,3,1]                 => 9
[3,3,2,2]                 => 8
[3,3,2,1,1]               => 7
[3,3,1,1,1,1]             => 6
[3,2,2,2,1]               => 6
[3,2,2,1,1,1]             => 5
[3,2,1,1,1,1,1]           => 4
[3,1,1,1,1,1,1,1]         => 3
[2,2,2,2,2]               => 5
[2,2,2,2,1,1]             => 4
[2,2,2,1,1,1,1]           => 3
[2,2,1,1,1,1,1,1]         => 2
[2,1,1,1,1,1,1,1,1]       => 1
[1,1,1,1,1,1,1,1,1,1]     => 0
[11]                      => 55
[10,1]                    => 45
[9,2]                     => 37
[9,1,1]                   => 36
[8,3]                     => 31
[8,2,1]                   => 29
[8,1,1,1]                 => 28
[7,4]                     => 27
[7,3,1]                   => 24
[7,2,2]                   => 23
[7,2,1,1]                 => 22
[7,1,1,1,1]               => 21
[6,5]                     => 25
[6,4,1]                   => 21
[6,3,2]                   => 19
[6,3,1,1]                 => 18
[6,2,2,1]                 => 17
[6,2,1,1,1]               => 16
[6,1,1,1,1,1]             => 15
[5,5,1]                   => 20
[5,4,2]                   => 17
[5,4,1,1]                 => 16
[5,3,3]                   => 16
[5,3,2,1]                 => 14
[5,3,1,1,1]               => 13
[5,2,2,2]                 => 13
[5,2,2,1,1]               => 12
[5,2,1,1,1,1]             => 11
[5,1,1,1,1,1,1]           => 10
[4,4,3]                   => 15
[4,4,2,1]                 => 13
[4,4,1,1,1]               => 12
[4,3,3,1]                 => 12
[4,3,2,2]                 => 11
[4,3,2,1,1]               => 10
[4,3,1,1,1,1]             => 9
[4,2,2,2,1]               => 9
[4,2,2,1,1,1]             => 8
[4,2,1,1,1,1,1]           => 7
[4,1,1,1,1,1,1,1]         => 6
[3,3,3,2]                 => 10
[3,3,3,1,1]               => 9
[3,3,2,2,1]               => 8
[3,3,2,1,1,1]             => 7
[3,3,1,1,1,1,1]           => 6
[3,2,2,2,2]               => 7
[3,2,2,2,1,1]             => 6
[3,2,2,1,1,1,1]           => 5
[3,2,1,1,1,1,1,1]         => 4
[3,1,1,1,1,1,1,1,1]       => 3
[2,2,2,2,2,1]             => 5
[2,2,2,2,1,1,1]           => 4
[2,2,2,1,1,1,1,1]         => 3
[2,2,1,1,1,1,1,1,1]       => 2
[2,1,1,1,1,1,1,1,1,1]     => 1
[1,1,1,1,1,1,1,1,1,1,1]   => 0
[12]                      => 66
[11,1]                    => 55
[10,2]                    => 46
[10,1,1]                  => 45
[9,3]                     => 39
[9,2,1]                   => 37
[9,1,1,1]                 => 36
[8,4]                     => 34
[8,3,1]                   => 31
[8,2,2]                   => 30
[8,2,1,1]                 => 29
[8,1,1,1,1]               => 28
[7,5]                     => 31
[7,4,1]                   => 27
[7,3,2]                   => 25
[7,3,1,1]                 => 24
[7,2,2,1]                 => 23
[7,2,1,1,1]               => 22
[7,1,1,1,1,1]             => 21
[6,6]                     => 30
[6,5,1]                   => 25
[6,4,2]                   => 22
[6,4,1,1]                 => 21
[6,3,3]                   => 21
[6,3,2,1]                 => 19
[6,3,1,1,1]               => 18
[6,2,2,2]                 => 18
[6,2,2,1,1]               => 17
[6,2,1,1,1,1]             => 16
[6,1,1,1,1,1,1]           => 15
[5,5,2]                   => 21
[5,5,1,1]                 => 20
[5,4,3]                   => 19
[5,4,2,1]                 => 17
[5,4,1,1,1]               => 16
[5,3,3,1]                 => 16
[5,3,2,2]                 => 15
[5,3,2,1,1]               => 14
[5,3,1,1,1,1]             => 13
[5,2,2,2,1]               => 13
[5,2,2,1,1,1]             => 12
[5,2,1,1,1,1,1]           => 11
[5,1,1,1,1,1,1,1]         => 10
[4,4,4]                   => 18
[4,4,3,1]                 => 15
[4,4,2,2]                 => 14
[4,4,2,1,1]               => 13
[4,4,1,1,1,1]             => 12
[4,3,3,2]                 => 13
[4,3,3,1,1]               => 12
[4,3,2,2,1]               => 11
[4,3,2,1,1,1]             => 10
[4,3,1,1,1,1,1]           => 9
[4,2,2,2,2]               => 10
[4,2,2,2,1,1]             => 9
[4,2,2,1,1,1,1]           => 8
[4,2,1,1,1,1,1,1]         => 7
[4,1,1,1,1,1,1,1,1]       => 6
[3,3,3,3]                 => 12
[3,3,3,2,1]               => 10
[3,3,3,1,1,1]             => 9
[3,3,2,2,2]               => 9
[3,3,2,2,1,1]             => 8
[3,3,2,1,1,1,1]           => 7
[3,3,1,1,1,1,1,1]         => 6
[3,2,2,2,2,1]             => 7
[3,2,2,2,1,1,1]           => 6
[3,2,2,1,1,1,1,1]         => 5
[3,2,1,1,1,1,1,1,1]       => 4
[3,1,1,1,1,1,1,1,1,1]     => 3
[2,2,2,2,2,2]             => 6
[2,2,2,2,2,1,1]           => 5
[2,2,2,2,1,1,1,1]         => 4
[2,2,2,1,1,1,1,1,1]       => 3
[2,2,1,1,1,1,1,1,1,1]     => 2
[2,1,1,1,1,1,1,1,1,1,1]   => 1
[1,1,1,1,1,1,1,1,1,1,1,1] => 0

-----------------------------------------------------------------------------
Created: Aug 07, 2016 at 13:27 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Sep 07, 2024 at 01:41 by Sara Billey