Identifier
Values
=>
Cc0029;cc-rep
[1]=>([(0,1)],2)=>2 [1,2]=>([(0,1),(0,2),(1,3),(2,3)],4)=>4 [2,1]=>([(0,1),(0,2),(1,3),(2,3)],4)=>4 [1,2,3]=>([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)=>5 [1,3,2]=>([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>5 [2,1,3]=>([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>5 [2,3,1]=>([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>5 [3,1,2]=>([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>5 [3,2,1]=>([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)=>5 [2,4,1,3]=>([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>6 [3,1,4,2]=>([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>6 [2,4,1,5,3]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>7 [2,5,3,1,4]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>7 [3,1,5,2,4]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>7 [3,5,1,4,2]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>7 [4,1,3,5,2]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>7 [4,2,5,1,3]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of modular elements of a lattice.
A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$, and is modular if both $(x, y)$ and $(y, x)$ are modular pairs for every $y\in L$.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.