*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000532

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The total number of rook placements on a Ferrers board.

-----------------------------------------------------------------------------
References: [1]   [[wikipedia:Rook_polynomial]]

-----------------------------------------------------------------------------
Code:
def statistic(la):
    return sum(matrix([[1]*p + [0]*(la[0]-p) for p in la]).rook_vector())


-----------------------------------------------------------------------------
Statistic values:

[]                        => 1
[1]                       => 2
[2]                       => 3
[1,1]                     => 3
[3]                       => 4
[2,1]                     => 5
[1,1,1]                   => 4
[4]                       => 5
[3,1]                     => 7
[2,2]                     => 7
[2,1,1]                   => 7
[1,1,1,1]                 => 5
[5]                       => 6
[4,1]                     => 9
[3,2]                     => 10
[3,1,1]                   => 10
[2,2,1]                   => 10
[2,1,1,1]                 => 9
[1,1,1,1,1]               => 6
[6]                       => 7
[5,1]                     => 11
[4,2]                     => 13
[4,1,1]                   => 13
[3,3]                     => 13
[3,2,1]                   => 15
[3,1,1,1]                 => 13
[2,2,2]                   => 13
[2,2,1,1]                 => 13
[2,1,1,1,1]               => 11
[1,1,1,1,1,1]             => 7
[7]                       => 8
[6,1]                     => 13
[5,2]                     => 16
[5,1,1]                   => 16
[4,3]                     => 17
[4,2,1]                   => 20
[4,1,1,1]                 => 17
[3,3,1]                   => 20
[3,2,2]                   => 20
[3,2,1,1]                 => 20
[3,1,1,1,1]               => 16
[2,2,2,1]                 => 17
[2,2,1,1,1]               => 16
[2,1,1,1,1,1]             => 13
[1,1,1,1,1,1,1]           => 8
[8]                       => 9
[7,1]                     => 15
[6,2]                     => 19
[6,1,1]                   => 19
[5,3]                     => 21
[5,2,1]                   => 25
[5,1,1,1]                 => 21
[4,4]                     => 21
[4,3,1]                   => 27
[4,2,2]                   => 27
[4,2,1,1]                 => 27
[4,1,1,1,1]               => 21
[3,3,2]                   => 27
[3,3,1,1]                 => 27
[3,2,2,1]                 => 27
[3,2,1,1,1]               => 25
[3,1,1,1,1,1]             => 19
[2,2,2,2]                 => 21
[2,2,2,1,1]               => 21
[2,2,1,1,1,1]             => 19
[2,1,1,1,1,1,1]           => 15
[1,1,1,1,1,1,1,1]         => 9
[9]                       => 10
[8,1]                     => 17
[7,2]                     => 22
[7,1,1]                   => 22
[6,3]                     => 25
[6,2,1]                   => 30
[6,1,1,1]                 => 25
[5,4]                     => 26
[5,3,1]                   => 34
[5,2,2]                   => 34
[5,2,1,1]                 => 34
[5,1,1,1,1]               => 26
[4,4,1]                   => 34
[4,3,2]                   => 37
[4,3,1,1]                 => 37
[4,2,2,1]                 => 37
[4,2,1,1,1]               => 34
[4,1,1,1,1,1]             => 25
[3,3,3]                   => 34
[3,3,2,1]                 => 37
[3,3,1,1,1]               => 34
[3,2,2,2]                 => 34
[3,2,2,1,1]               => 34
[3,2,1,1,1,1]             => 30
[3,1,1,1,1,1,1]           => 22
[2,2,2,2,1]               => 26
[2,2,2,1,1,1]             => 25
[2,2,1,1,1,1,1]           => 22
[2,1,1,1,1,1,1,1]         => 17
[1,1,1,1,1,1,1,1,1]       => 10
[10]                      => 11
[9,1]                     => 19
[8,2]                     => 25
[8,1,1]                   => 25
[7,3]                     => 29
[7,2,1]                   => 35
[7,1,1,1]                 => 29
[6,4]                     => 31
[6,3,1]                   => 41
[6,2,2]                   => 41
[6,2,1,1]                 => 41
[6,1,1,1,1]               => 31
[5,5]                     => 31
[5,4,1]                   => 43
[5,3,2]                   => 47
[5,3,1,1]                 => 47
[5,2,2,1]                 => 47
[5,2,1,1,1]               => 43
[5,1,1,1,1,1]             => 31
[4,4,2]                   => 47
[4,4,1,1]                 => 47
[4,3,3]                   => 47
[4,3,2,1]                 => 52
[4,3,1,1,1]               => 47
[4,2,2,2]                 => 47
[4,2,2,1,1]               => 47
[4,2,1,1,1,1]             => 41
[4,1,1,1,1,1,1]           => 29
[3,3,3,1]                 => 47
[3,3,2,2]                 => 47
[3,3,2,1,1]               => 47
[3,3,1,1,1,1]             => 41
[3,2,2,2,1]               => 43
[3,2,2,1,1,1]             => 41
[3,2,1,1,1,1,1]           => 35
[3,1,1,1,1,1,1,1]         => 25
[2,2,2,2,2]               => 31
[2,2,2,2,1,1]             => 31
[2,2,2,1,1,1,1]           => 29
[2,2,1,1,1,1,1,1]         => 25
[2,1,1,1,1,1,1,1,1]       => 19
[1,1,1,1,1,1,1,1,1,1]     => 11
[11]                      => 12
[10,1]                    => 21
[9,2]                     => 28
[9,1,1]                   => 28
[8,3]                     => 33
[8,2,1]                   => 40
[8,1,1,1]                 => 33
[7,4]                     => 36
[7,3,1]                   => 48
[7,2,2]                   => 48
[7,2,1,1]                 => 48
[7,1,1,1,1]               => 36
[6,5]                     => 37
[6,4,1]                   => 52
[6,3,2]                   => 57
[6,3,1,1]                 => 57
[6,2,2,1]                 => 57
[6,2,1,1,1]               => 52
[6,1,1,1,1,1]             => 37
[5,5,1]                   => 52
[5,4,2]                   => 60
[5,4,1,1]                 => 60
[5,3,3]                   => 60
[5,3,2,1]                 => 67
[5,3,1,1,1]               => 60
[5,2,2,2]                 => 60
[5,2,2,1,1]               => 60
[5,2,1,1,1,1]             => 52
[5,1,1,1,1,1,1]           => 36
[4,4,3]                   => 60
[4,4,2,1]                 => 67
[4,4,1,1,1]               => 60
[4,3,3,1]                 => 67
[4,3,2,2]                 => 67
[4,3,2,1,1]               => 67
[4,3,1,1,1,1]             => 57
[4,2,2,2,1]               => 60
[4,2,2,1,1,1]             => 57
[4,2,1,1,1,1,1]           => 48
[4,1,1,1,1,1,1,1]         => 33
[3,3,3,2]                 => 60
[3,3,3,1,1]               => 60
[3,3,2,2,1]               => 60
[3,3,2,1,1,1]             => 57
[3,3,1,1,1,1,1]           => 48
[3,2,2,2,2]               => 52
[3,2,2,2,1,1]             => 52
[3,2,2,1,1,1,1]           => 48
[3,2,1,1,1,1,1,1]         => 40
[3,1,1,1,1,1,1,1,1]       => 28
[2,2,2,2,2,1]             => 37
[2,2,2,2,1,1,1]           => 36
[2,2,2,1,1,1,1,1]         => 33
[2,2,1,1,1,1,1,1,1]       => 28
[2,1,1,1,1,1,1,1,1,1]     => 21
[1,1,1,1,1,1,1,1,1,1,1]   => 12
[12]                      => 13
[11,1]                    => 23
[10,2]                    => 31
[10,1,1]                  => 31
[9,3]                     => 37
[9,2,1]                   => 45
[9,1,1,1]                 => 37
[8,4]                     => 41
[8,3,1]                   => 55
[8,2,2]                   => 55
[8,2,1,1]                 => 55
[8,1,1,1,1]               => 41
[7,5]                     => 43
[7,4,1]                   => 61
[7,3,2]                   => 67
[7,3,1,1]                 => 67
[7,2,2,1]                 => 67
[7,2,1,1,1]               => 61
[7,1,1,1,1,1]             => 43
[6,6]                     => 43
[6,5,1]                   => 63
[6,4,2]                   => 73
[6,4,1,1]                 => 73
[6,3,3]                   => 73
[6,3,2,1]                 => 82
[6,3,1,1,1]               => 73
[6,2,2,2]                 => 73
[6,2,2,1,1]               => 73
[6,2,1,1,1,1]             => 63
[6,1,1,1,1,1,1]           => 43
[5,5,2]                   => 73
[5,5,1,1]                 => 73
[5,4,3]                   => 77
[5,4,2,1]                 => 87
[5,4,1,1,1]               => 77
[5,3,3,1]                 => 87
[5,3,2,2]                 => 87
[5,3,2,1,1]               => 87
[5,3,1,1,1,1]             => 73
[5,2,2,2,1]               => 77
[5,2,2,1,1,1]             => 73
[5,2,1,1,1,1,1]           => 61
[5,1,1,1,1,1,1,1]         => 41
[4,4,4]                   => 73
[4,4,3,1]                 => 87
[4,4,2,2]                 => 87
[4,4,2,1,1]               => 87
[4,4,1,1,1,1]             => 73
[4,3,3,2]                 => 87
[4,3,3,1,1]               => 87
[4,3,2,2,1]               => 87
[4,3,2,1,1,1]             => 82
[4,3,1,1,1,1,1]           => 67
[4,2,2,2,2]               => 73
[4,2,2,2,1,1]             => 73
[4,2,2,1,1,1,1]           => 67
[4,2,1,1,1,1,1,1]         => 55
[4,1,1,1,1,1,1,1,1]       => 37
[3,3,3,3]                 => 73
[3,3,3,2,1]               => 77
[3,3,3,1,1,1]             => 73
[3,3,2,2,2]               => 73
[3,3,2,2,1,1]             => 73
[3,3,2,1,1,1,1]           => 67
[3,3,1,1,1,1,1,1]         => 55
[3,2,2,2,2,1]             => 63
[3,2,2,2,1,1,1]           => 61
[3,2,2,1,1,1,1,1]         => 55
[3,2,1,1,1,1,1,1,1]       => 45
[3,1,1,1,1,1,1,1,1,1]     => 31
[2,2,2,2,2,2]             => 43
[2,2,2,2,2,1,1]           => 43
[2,2,2,2,1,1,1,1]         => 41
[2,2,2,1,1,1,1,1,1]       => 37
[2,2,1,1,1,1,1,1,1,1]     => 31
[2,1,1,1,1,1,1,1,1,1,1]   => 23
[1,1,1,1,1,1,1,1,1,1,1,1] => 13
[5,4,3,1]                 => 114
[5,4,2,2]                 => 114
[5,4,2,1,1]               => 114
[5,3,3,2]                 => 114
[5,3,3,1,1]               => 114
[5,3,2,2,1]               => 114
[4,4,3,2]                 => 114
[4,4,3,1,1]               => 114
[4,4,2,2,1]               => 114
[4,3,3,2,1]               => 114
[5,4,3,2]                 => 151
[5,4,3,1,1]               => 151
[5,4,2,2,1]               => 151
[5,3,3,2,1]               => 151
[4,4,3,2,1]               => 151
[5,4,3,2,1]               => 203

-----------------------------------------------------------------------------
Created: Jun 10, 2016 at 23:59 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Apr 26, 2018 at 07:39 by Martin Rubey