*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000531

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The leading coefficient of the rook polynomial of an integer partition.

Let $m$ be the minimum of the number of parts and the size of the first part of an integer partition $\lambda$.  Then this statistic yields the number of ways to place $m$ non-attacking rooks on the Ferrers board of $\lambda$.

-----------------------------------------------------------------------------
References: [1]   [[wikipedia:Rook_polynomial]]

-----------------------------------------------------------------------------
Code:
def statistic(la):
    return (matrix([[1]*p + [0]*(la[0]-p) for p in la]).rook_vector())[-1]


-----------------------------------------------------------------------------
Statistic values:

[]                        => 1
[1]                       => 1
[2]                       => 2
[1,1]                     => 2
[3]                       => 3
[2,1]                     => 1
[1,1,1]                   => 3
[4]                       => 4
[3,1]                     => 2
[2,2]                     => 2
[2,1,1]                   => 2
[1,1,1,1]                 => 4
[5]                       => 5
[4,1]                     => 3
[3,2]                     => 4
[3,1,1]                   => 0
[2,2,1]                   => 4
[2,1,1,1]                 => 3
[1,1,1,1,1]               => 5
[6]                       => 6
[5,1]                     => 4
[4,2]                     => 6
[4,1,1]                   => 0
[3,3]                     => 6
[3,2,1]                   => 1
[3,1,1,1]                 => 0
[2,2,2]                   => 6
[2,2,1,1]                 => 6
[2,1,1,1,1]               => 4
[1,1,1,1,1,1]             => 6
[7]                       => 7
[6,1]                     => 5
[5,2]                     => 8
[5,1,1]                   => 0
[4,3]                     => 9
[4,2,1]                   => 2
[4,1,1,1]                 => 0
[3,3,1]                   => 2
[3,2,2]                   => 2
[3,2,1,1]                 => 2
[3,1,1,1,1]               => 0
[2,2,2,1]                 => 9
[2,2,1,1,1]               => 8
[2,1,1,1,1,1]             => 5
[1,1,1,1,1,1,1]           => 7
[8]                       => 8
[7,1]                     => 6
[6,2]                     => 10
[6,1,1]                   => 0
[5,3]                     => 12
[5,2,1]                   => 3
[5,1,1,1]                 => 0
[4,4]                     => 12
[4,3,1]                   => 4
[4,2,2]                   => 4
[4,2,1,1]                 => 0
[4,1,1,1,1]               => 0
[3,3,2]                   => 4
[3,3,1,1]                 => 4
[3,2,2,1]                 => 4
[3,2,1,1,1]               => 3
[3,1,1,1,1,1]             => 0
[2,2,2,2]                 => 12
[2,2,2,1,1]               => 12
[2,2,1,1,1,1]             => 10
[2,1,1,1,1,1,1]           => 6
[1,1,1,1,1,1,1,1]         => 8
[9]                       => 9
[8,1]                     => 7
[7,2]                     => 12
[7,1,1]                   => 0
[6,3]                     => 15
[6,2,1]                   => 4
[6,1,1,1]                 => 0
[5,4]                     => 16
[5,3,1]                   => 6
[5,2,2]                   => 6
[5,2,1,1]                 => 0
[5,1,1,1,1]               => 0
[4,4,1]                   => 6
[4,3,2]                   => 8
[4,3,1,1]                 => 0
[4,2,2,1]                 => 0
[4,2,1,1,1]               => 0
[4,1,1,1,1,1]             => 0
[3,3,3]                   => 6
[3,3,2,1]                 => 8
[3,3,1,1,1]               => 6
[3,2,2,2]                 => 6
[3,2,2,1,1]               => 6
[3,2,1,1,1,1]             => 4
[3,1,1,1,1,1,1]           => 0
[2,2,2,2,1]               => 16
[2,2,2,1,1,1]             => 15
[2,2,1,1,1,1,1]           => 12
[2,1,1,1,1,1,1,1]         => 7
[1,1,1,1,1,1,1,1,1]       => 9
[10]                      => 10
[9,1]                     => 8
[8,2]                     => 14
[8,1,1]                   => 0
[7,3]                     => 18
[7,2,1]                   => 5
[7,1,1,1]                 => 0
[6,4]                     => 20
[6,3,1]                   => 8
[6,2,2]                   => 8
[6,2,1,1]                 => 0
[6,1,1,1,1]               => 0
[5,5]                     => 20
[5,4,1]                   => 9
[5,3,2]                   => 12
[5,3,1,1]                 => 0
[5,2,2,1]                 => 0
[5,2,1,1,1]               => 0
[5,1,1,1,1,1]             => 0
[4,4,2]                   => 12
[4,4,1,1]                 => 0
[4,3,3]                   => 12
[4,3,2,1]                 => 1
[4,3,1,1,1]               => 0
[4,2,2,2]                 => 0
[4,2,2,1,1]               => 0
[4,2,1,1,1,1]             => 0
[4,1,1,1,1,1,1]           => 0
[3,3,3,1]                 => 12
[3,3,2,2]                 => 12
[3,3,2,1,1]               => 12
[3,3,1,1,1,1]             => 8
[3,2,2,2,1]               => 9
[3,2,2,1,1,1]             => 8
[3,2,1,1,1,1,1]           => 5
[3,1,1,1,1,1,1,1]         => 0
[2,2,2,2,2]               => 20
[2,2,2,2,1,1]             => 20
[2,2,2,1,1,1,1]           => 18
[2,2,1,1,1,1,1,1]         => 14
[2,1,1,1,1,1,1,1,1]       => 8
[1,1,1,1,1,1,1,1,1,1]     => 10
[11]                      => 11
[10,1]                    => 9
[9,2]                     => 16
[9,1,1]                   => 0
[8,3]                     => 21
[8,2,1]                   => 6
[8,1,1,1]                 => 0
[7,4]                     => 24
[7,3,1]                   => 10
[7,2,2]                   => 10
[7,2,1,1]                 => 0
[7,1,1,1,1]               => 0
[6,5]                     => 25
[6,4,1]                   => 12
[6,3,2]                   => 16
[6,3,1,1]                 => 0
[6,2,2,1]                 => 0
[6,2,1,1,1]               => 0
[6,1,1,1,1,1]             => 0
[5,5,1]                   => 12
[5,4,2]                   => 18
[5,4,1,1]                 => 0
[5,3,3]                   => 18
[5,3,2,1]                 => 2
[5,3,1,1,1]               => 0
[5,2,2,2]                 => 0
[5,2,2,1,1]               => 0
[5,2,1,1,1,1]             => 0
[5,1,1,1,1,1,1]           => 0
[4,4,3]                   => 18
[4,4,2,1]                 => 2
[4,4,1,1,1]               => 0
[4,3,3,1]                 => 2
[4,3,2,2]                 => 2
[4,3,2,1,1]               => 2
[4,3,1,1,1,1]             => 0
[4,2,2,2,1]               => 0
[4,2,2,1,1,1]             => 0
[4,2,1,1,1,1,1]           => 0
[4,1,1,1,1,1,1,1]         => 0
[3,3,3,2]                 => 18
[3,3,3,1,1]               => 18
[3,3,2,2,1]               => 18
[3,3,2,1,1,1]             => 16
[3,3,1,1,1,1,1]           => 10
[3,2,2,2,2]               => 12
[3,2,2,2,1,1]             => 12
[3,2,2,1,1,1,1]           => 10
[3,2,1,1,1,1,1,1]         => 6
[3,1,1,1,1,1,1,1,1]       => 0
[2,2,2,2,2,1]             => 25
[2,2,2,2,1,1,1]           => 24
[2,2,2,1,1,1,1,1]         => 21
[2,2,1,1,1,1,1,1,1]       => 16
[2,1,1,1,1,1,1,1,1,1]     => 9
[1,1,1,1,1,1,1,1,1,1,1]   => 11
[12]                      => 12
[11,1]                    => 10
[10,2]                    => 18
[10,1,1]                  => 0
[9,3]                     => 24
[9,2,1]                   => 7
[9,1,1,1]                 => 0
[8,4]                     => 28
[8,3,1]                   => 12
[8,2,2]                   => 12
[8,2,1,1]                 => 0
[8,1,1,1,1]               => 0
[7,5]                     => 30
[7,4,1]                   => 15
[7,3,2]                   => 20
[7,3,1,1]                 => 0
[7,2,2,1]                 => 0
[7,2,1,1,1]               => 0
[7,1,1,1,1,1]             => 0
[6,6]                     => 30
[6,5,1]                   => 16
[6,4,2]                   => 24
[6,4,1,1]                 => 0
[6,3,3]                   => 24
[6,3,2,1]                 => 3
[6,3,1,1,1]               => 0
[6,2,2,2]                 => 0
[6,2,2,1,1]               => 0
[6,2,1,1,1,1]             => 0
[6,1,1,1,1,1,1]           => 0
[5,5,2]                   => 24
[5,5,1,1]                 => 0
[5,4,3]                   => 27
[5,4,2,1]                 => 4
[5,4,1,1,1]               => 0
[5,3,3,1]                 => 4
[5,3,2,2]                 => 4
[5,3,2,1,1]               => 0
[5,3,1,1,1,1]             => 0
[5,2,2,2,1]               => 0
[5,2,2,1,1,1]             => 0
[5,2,1,1,1,1,1]           => 0
[5,1,1,1,1,1,1,1]         => 0
[4,4,4]                   => 24
[4,4,3,1]                 => 4
[4,4,2,2]                 => 4
[4,4,2,1,1]               => 4
[4,4,1,1,1,1]             => 0
[4,3,3,2]                 => 4
[4,3,3,1,1]               => 4
[4,3,2,2,1]               => 4
[4,3,2,1,1,1]             => 3
[4,3,1,1,1,1,1]           => 0
[4,2,2,2,2]               => 0
[4,2,2,2,1,1]             => 0
[4,2,2,1,1,1,1]           => 0
[4,2,1,1,1,1,1,1]         => 0
[4,1,1,1,1,1,1,1,1]       => 0
[3,3,3,3]                 => 24
[3,3,3,2,1]               => 27
[3,3,3,1,1,1]             => 24
[3,3,2,2,2]               => 24
[3,3,2,2,1,1]             => 24
[3,3,2,1,1,1,1]           => 20
[3,3,1,1,1,1,1,1]         => 12
[3,2,2,2,2,1]             => 16
[3,2,2,2,1,1,1]           => 15
[3,2,2,1,1,1,1,1]         => 12
[3,2,1,1,1,1,1,1,1]       => 7
[3,1,1,1,1,1,1,1,1,1]     => 0
[2,2,2,2,2,2]             => 30
[2,2,2,2,2,1,1]           => 30
[2,2,2,2,1,1,1,1]         => 28
[2,2,2,1,1,1,1,1,1]       => 24
[2,2,1,1,1,1,1,1,1,1]     => 18
[2,1,1,1,1,1,1,1,1,1,1]   => 10
[1,1,1,1,1,1,1,1,1,1,1,1] => 12

-----------------------------------------------------------------------------
Created: Jun 10, 2016 at 23:50 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Dec 22, 2020 at 13:32 by Martin Rubey