*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000517

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The Kreweras number of an integer partition.

This is defined for $\lambda \vdash n$ with $k$ parts as
$$\frac{1}{n+1}\binom{n+1}{n+1-k,\mu_1(\lambda),\ldots,\mu_n(\lambda)}$$
where $\mu_j(\lambda)$ denotes the number of parts of $\lambda$ equal to $j$, see [1]. This formula indeed counts the number of noncrossing set partitions where the ordered block sizes are the partition $\lambda$.

These numbers refine the Narayana numbers $N(n,k) = \frac{1}{k}\binom{n-1}{k-1}\binom{n}{k-1}$ and thus sum up to the Catalan numbers $\frac{1}{n+1}\binom{2n}{n}$.

-----------------------------------------------------------------------------
References: [1]   Reiner, V., Sommers, E. Weyl group $q$-Kreweras numbers and cyclic sieving [[arXiv:1605.09172]]

-----------------------------------------------------------------------------
Code:
def statistic(la):
    la = list(la)
    n = sum(la)
    k = len(la)
    multi = [n+1-k]+[ la.count(j) for j in [1..n] ]
    return multinomial(multi)/(n+1)


-----------------------------------------------------------------------------
Statistic values:

[]                              => 1
[1]                             => 1
[2]                             => 1
[1,1]                           => 1
[3]                             => 1
[2,1]                           => 3
[1,1,1]                         => 1
[4]                             => 1
[3,1]                           => 4
[2,2]                           => 2
[2,1,1]                         => 6
[1,1,1,1]                       => 1
[5]                             => 1
[4,1]                           => 5
[3,2]                           => 5
[3,1,1]                         => 10
[2,2,1]                         => 10
[2,1,1,1]                       => 10
[1,1,1,1,1]                     => 1
[6]                             => 1
[5,1]                           => 6
[4,2]                           => 6
[4,1,1]                         => 15
[3,3]                           => 3
[3,2,1]                         => 30
[3,1,1,1]                       => 20
[2,2,2]                         => 5
[2,2,1,1]                       => 30
[2,1,1,1,1]                     => 15
[1,1,1,1,1,1]                   => 1
[7]                             => 1
[6,1]                           => 7
[5,2]                           => 7
[5,1,1]                         => 21
[4,3]                           => 7
[4,2,1]                         => 42
[4,1,1,1]                       => 35
[3,3,1]                         => 21
[3,2,2]                         => 21
[3,2,1,1]                       => 105
[3,1,1,1,1]                     => 35
[2,2,2,1]                       => 35
[2,2,1,1,1]                     => 70
[2,1,1,1,1,1]                   => 21
[1,1,1,1,1,1,1]                 => 1
[8]                             => 1
[7,1]                           => 8
[6,2]                           => 8
[6,1,1]                         => 28
[5,3]                           => 8
[5,2,1]                         => 56
[5,1,1,1]                       => 56
[4,4]                           => 4
[4,3,1]                         => 56
[4,2,2]                         => 28
[4,2,1,1]                       => 168
[4,1,1,1,1]                     => 70
[3,3,2]                         => 28
[3,3,1,1]                       => 84
[3,2,2,1]                       => 168
[3,2,1,1,1]                     => 280
[3,1,1,1,1,1]                   => 56
[2,2,2,2]                       => 14
[2,2,2,1,1]                     => 140
[2,2,1,1,1,1]                   => 140
[2,1,1,1,1,1,1]                 => 28
[1,1,1,1,1,1,1,1]               => 1
[9]                             => 1
[8,1]                           => 9
[7,2]                           => 9
[7,1,1]                         => 36
[6,3]                           => 9
[6,2,1]                         => 72
[6,1,1,1]                       => 84
[5,4]                           => 9
[5,3,1]                         => 72
[5,2,2]                         => 36
[5,2,1,1]                       => 252
[5,1,1,1,1]                     => 126
[4,4,1]                         => 36
[4,3,2]                         => 72
[4,3,1,1]                       => 252
[4,2,2,1]                       => 252
[4,2,1,1,1]                     => 504
[4,1,1,1,1,1]                   => 126
[3,3,3]                         => 12
[3,3,2,1]                       => 252
[3,3,1,1,1]                     => 252
[3,2,2,2]                       => 84
[3,2,2,1,1]                     => 756
[3,2,1,1,1,1]                   => 630
[3,1,1,1,1,1,1]                 => 84
[2,2,2,2,1]                     => 126
[2,2,2,1,1,1]                   => 420
[2,2,1,1,1,1,1]                 => 252
[2,1,1,1,1,1,1,1]               => 36
[1,1,1,1,1,1,1,1,1]             => 1
[10]                            => 1
[9,1]                           => 10
[8,2]                           => 10
[8,1,1]                         => 45
[7,3]                           => 10
[7,2,1]                         => 90
[7,1,1,1]                       => 120
[6,4]                           => 10
[6,3,1]                         => 90
[6,2,2]                         => 45
[6,2,1,1]                       => 360
[6,1,1,1,1]                     => 210
[5,5]                           => 5
[5,4,1]                         => 90
[5,3,2]                         => 90
[5,3,1,1]                       => 360
[5,2,2,1]                       => 360
[5,2,1,1,1]                     => 840
[5,1,1,1,1,1]                   => 252
[4,4,2]                         => 45
[4,4,1,1]                       => 180
[4,3,3]                         => 45
[4,3,2,1]                       => 720
[4,3,1,1,1]                     => 840
[4,2,2,2]                       => 120
[4,2,2,1,1]                     => 1260
[4,2,1,1,1,1]                   => 1260
[4,1,1,1,1,1,1]                 => 210
[3,3,3,1]                       => 120
[3,3,2,2]                       => 180
[3,3,2,1,1]                     => 1260
[3,3,1,1,1,1]                   => 630
[3,2,2,2,1]                     => 840
[3,2,2,1,1,1]                   => 2520
[3,2,1,1,1,1,1]                 => 1260
[3,1,1,1,1,1,1,1]               => 120
[2,2,2,2,2]                     => 42
[2,2,2,2,1,1]                   => 630
[2,2,2,1,1,1,1]                 => 1050
[2,2,1,1,1,1,1,1]               => 420
[2,1,1,1,1,1,1,1,1]             => 45
[1,1,1,1,1,1,1,1,1,1]           => 1
[11]                            => 1
[10,1]                          => 11
[9,2]                           => 11
[9,1,1]                         => 55
[8,3]                           => 11
[8,2,1]                         => 110
[8,1,1,1]                       => 165
[7,4]                           => 11
[7,3,1]                         => 110
[7,2,2]                         => 55
[7,2,1,1]                       => 495
[7,1,1,1,1]                     => 330
[6,5]                           => 11
[6,4,1]                         => 110
[6,3,2]                         => 110
[6,3,1,1]                       => 495
[6,2,2,1]                       => 495
[6,2,1,1,1]                     => 1320
[6,1,1,1,1,1]                   => 462
[5,5,1]                         => 55
[5,4,2]                         => 110
[5,4,1,1]                       => 495
[5,3,3]                         => 55
[5,3,2,1]                       => 990
[5,3,1,1,1]                     => 1320
[5,2,2,2]                       => 165
[5,2,2,1,1]                     => 1980
[5,2,1,1,1,1]                   => 2310
[5,1,1,1,1,1,1]                 => 462
[4,4,3]                         => 55
[4,4,2,1]                       => 495
[4,4,1,1,1]                     => 660
[4,3,3,1]                       => 495
[4,3,2,2]                       => 495
[4,3,2,1,1]                     => 3960
[4,3,1,1,1,1]                   => 2310
[4,2,2,2,1]                     => 1320
[4,2,2,1,1,1]                   => 4620
[4,2,1,1,1,1,1]                 => 2772
[4,1,1,1,1,1,1,1]               => 330
[3,3,3,2]                       => 165
[3,3,3,1,1]                     => 660
[3,3,2,2,1]                     => 1980
[3,3,2,1,1,1]                   => 4620
[3,3,1,1,1,1,1]                 => 1386
[3,2,2,2,2]                     => 330
[3,2,2,2,1,1]                   => 4620
[3,2,2,1,1,1,1]                 => 6930
[3,2,1,1,1,1,1,1]               => 2310
[3,1,1,1,1,1,1,1,1]             => 165
[2,2,2,2,2,1]                   => 462
[2,2,2,2,1,1,1]                 => 2310
[2,2,2,1,1,1,1,1]               => 2310
[2,2,1,1,1,1,1,1,1]             => 660
[2,1,1,1,1,1,1,1,1,1]           => 55
[1,1,1,1,1,1,1,1,1,1,1]         => 1
[12]                            => 1
[11,1]                          => 12
[10,2]                          => 12
[10,1,1]                        => 66
[9,3]                           => 12
[9,2,1]                         => 132
[9,1,1,1]                       => 220
[8,4]                           => 12
[8,3,1]                         => 132
[8,2,2]                         => 66
[8,2,1,1]                       => 660
[8,1,1,1,1]                     => 495
[7,5]                           => 12
[7,4,1]                         => 132
[7,3,2]                         => 132
[7,3,1,1]                       => 660
[7,2,2,1]                       => 660
[7,2,1,1,1]                     => 1980
[7,1,1,1,1,1]                   => 792
[6,6]                           => 6
[6,5,1]                         => 132
[6,4,2]                         => 132
[6,4,1,1]                       => 660
[6,3,3]                         => 66
[6,3,2,1]                       => 1320
[6,3,1,1,1]                     => 1980
[6,2,2,2]                       => 220
[6,2,2,1,1]                     => 2970
[6,2,1,1,1,1]                   => 3960
[6,1,1,1,1,1,1]                 => 924
[5,5,2]                         => 66
[5,5,1,1]                       => 330
[5,4,3]                         => 132
[5,4,2,1]                       => 1320
[5,4,1,1,1]                     => 1980
[5,3,3,1]                       => 660
[5,3,2,2]                       => 660
[5,3,2,1,1]                     => 5940
[5,3,1,1,1,1]                   => 3960
[5,2,2,2,1]                     => 1980
[5,2,2,1,1,1]                   => 7920
[5,2,1,1,1,1,1]                 => 5544
[5,1,1,1,1,1,1,1]               => 792
[4,4,4]                         => 22
[4,4,3,1]                       => 660
[4,4,2,2]                       => 330
[4,4,2,1,1]                     => 2970
[4,4,1,1,1,1]                   => 1980
[4,3,3,2]                       => 660
[4,3,3,1,1]                     => 2970
[4,3,2,2,1]                     => 5940
[4,3,2,1,1,1]                   => 15840
[4,3,1,1,1,1,1]                 => 5544
[4,2,2,2,2]                     => 495
[4,2,2,2,1,1]                   => 7920
[4,2,2,1,1,1,1]                 => 13860
[4,2,1,1,1,1,1,1]               => 5544
[4,1,1,1,1,1,1,1,1]             => 495
[3,3,3,3]                       => 55
[3,3,3,2,1]                     => 1980
[3,3,3,1,1,1]                   => 2640
[3,3,2,2,2]                     => 990
[3,3,2,2,1,1]                   => 11880
[3,3,2,1,1,1,1]                 => 13860
[3,3,1,1,1,1,1,1]               => 2772
[3,2,2,2,2,1]                   => 3960
[3,2,2,2,1,1,1]                 => 18480
[3,2,2,1,1,1,1,1]               => 16632
[3,2,1,1,1,1,1,1,1]             => 3960
[3,1,1,1,1,1,1,1,1,1]           => 220
[2,2,2,2,2,2]                   => 132
[2,2,2,2,2,1,1]                 => 2772
[2,2,2,2,1,1,1,1]               => 6930
[2,2,2,1,1,1,1,1,1]             => 4620
[2,2,1,1,1,1,1,1,1,1]           => 990
[2,1,1,1,1,1,1,1,1,1,1]         => 66
[1,1,1,1,1,1,1,1,1,1,1,1]       => 1
[13]                            => 1
[12,1]                          => 13
[10,3]                          => 13
[8,5]                           => 13
[7,6]                           => 13
[7,5,1]                         => 156
[7,4,2]                         => 156
[6,6,1]                         => 78
[6,4,2,1]                       => 1716
[5,5,3]                         => 78
[5,4,4]                         => 78
[5,4,3,1]                       => 1716
[5,4,2,2]                       => 858
[5,4,2,1,1]                     => 8580
[5,4,1,1,1,1]                   => 6435
[5,3,3,2]                       => 858
[5,3,3,1,1]                     => 4290
[5,3,2,2,1]                     => 8580
[5,3,2,1,1,1]                   => 25740
[4,4,4,1]                       => 286
[4,4,3,2]                       => 858
[4,4,3,1,1]                     => 4290
[4,4,2,2,1]                     => 4290
[4,3,3,3]                       => 286
[4,3,3,2,1]                     => 8580
[3,3,3,3,1]                     => 715
[3,3,3,2,2]                     => 1430
[3,3,2,2,2,1]                   => 12870
[3,2,2,2,2,2]                   => 1287
[2,2,2,2,2,2,1]                 => 1716
[1,1,1,1,1,1,1,1,1,1,1,1,1]     => 1
[14]                            => 1
[13,1]                          => 14
[9,5]                           => 14
[8,5,1]                         => 182
[7,7]                           => 7
[7,5,2]                         => 182
[7,4,3]                         => 182
[6,6,2]                         => 91
[6,4,4]                         => 91
[6,2,2,2,2]                     => 1001
[5,5,4]                         => 91
[5,5,1,1,1,1]                   => 5005
[5,4,3,2]                       => 2184
[5,4,3,1,1]                     => 12012
[5,4,2,2,1]                     => 12012
[5,4,2,1,1,1]                   => 40040
[5,3,3,3]                       => 364
[5,3,3,2,1]                     => 12012
[5,2,2,2,2,1]                   => 10010
[4,4,4,2]                       => 364
[4,4,3,3]                       => 546
[4,4,3,2,1]                     => 12012
[4,3,2,2,2,1]                   => 40040
[3,3,3,3,2]                     => 1001
[3,3,3,3,1,1]                   => 5005
[3,3,2,2,2,2]                   => 5005
[2,2,2,2,2,2,2]                 => 429
[1,1,1,1,1,1,1,1,1,1,1,1,1,1]   => 1
[15]                            => 1
[14,1]                          => 15
[9,5,1]                         => 210
[8,5,2]                         => 210
[7,5,3]                         => 210
[6,6,3]                         => 105
[6,5,4]                         => 210
[6,5,1,1,1,1]                   => 15015
[6,3,3,3]                       => 455
[6,2,2,2,2,1]                   => 15015
[5,5,5]                         => 35
[5,4,3,3]                       => 1365
[5,4,3,2,1]                     => 32760
[5,4,3,1,1,1]                   => 60060
[5,3,2,2,2,1]                   => 60060
[4,4,4,3]                       => 455
[4,4,4,1,1,1]                   => 10010
[4,3,3,3,2]                     => 5460
[3,3,3,3,3]                     => 273
[3,3,3,3,2,1]                   => 15015
[3,3,3,2,2,2]                   => 10010
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[16]                            => 1
[15,1]                          => 16
[8,8]                           => 8
[8,5,3]                         => 240
[7,5,3,1]                       => 3360
[6,6,4]                         => 120
[5,5,3,3]                       => 840
[5,5,2,2,2]                     => 3640
[5,4,4,3]                       => 1680
[5,4,3,2,1,1]                   => 262080
[5,4,2,2,2,1]                   => 87360
[4,4,4,4]                       => 140
[4,4,4,2,2]                     => 3640
[4,4,3,3,2]                     => 10920
[4,3,3,3,3]                     => 1820
[4,3,3,3,2,1]                   => 87360
[3,3,3,3,2,2]                   => 10920
[2,2,2,2,2,2,2,2]               => 1430
[17]                            => 1
[8,6,3]                         => 272
[7,5,3,2]                       => 4080
[6,5,3,3]                       => 2040
[6,5,2,2,2]                     => 9520
[6,4,4,3]                       => 2040
[6,4,4,1,1,1]                   => 61880
[6,3,3,3,2]                     => 9520
[6,3,3,3,1,1]                   => 61880
[5,5,4,3]                       => 2040
[5,5,4,1,1,1]                   => 61880
[5,5,2,2,2,1]                   => 61880
[5,4,4,4]                       => 680
[5,4,3,2,2,1]                   => 371280
[5,3,3,3,2,1]                   => 123760
[4,4,4,3,2]                     => 9520
[4,4,4,3,1,1]                   => 61880
[4,4,4,2,2,1]                   => 61880
[4,4,3,3,3]                     => 4760
[3,3,3,3,3,2]                   => 6188
[4,4,4,3,2,1]                   => 171360
[5,4,3,3,2,1]                   => 514080
[6,3,3,3,2,1]                   => 171360
[6,5,2,2,2,1]                   => 171360
[5,5,3,3,1,1]                   => 128520
[6,5,4,1,1,1]                   => 171360
[5,5,3,3,2]                     => 18360
[5,5,4,2,2]                     => 18360
[6,4,4,2,2]                     => 18360
[6,5,4,3]                       => 4896
[4,4,4,3,3]                     => 6120
[4,4,4,4,2]                     => 3060
[5,5,4,4]                       => 1224
[2,2,2,2,2,2,2,2,2]             => 4862
[3,3,3,3,3,3]                   => 1428
[18]                            => 1
[6,6,6]                         => 51
[9,6,3]                         => 306
[8,6,4]                         => 306
[9,9]                           => 9
[5,4,4,3,2,1]                   => 697680
[5,5,3,3,2,1]                   => 348840
[5,5,4,2,2,1]                   => 348840
[6,4,4,2,2,1]                   => 348840
[5,5,4,3,1,1]                   => 348840
[6,4,4,3,1,1]                   => 348840
[6,5,3,3,1,1]                   => 348840
[5,5,4,3,2]                     => 46512
[6,4,4,3,2]                     => 46512
[6,5,3,3,2]                     => 46512
[6,5,4,2,2]                     => 46512
[6,5,4,3,1]                     => 93024
[6,5,4,1,1,1,1]                 => 813960
[4,4,4,4,3]                     => 3876
[4,3,3,3,3,3]                   => 11628
[19]                            => 1
[9,6,4]                         => 342
[8,5,4,2]                       => 5814
[8,5,5,1]                       => 2907
[5,5,4,3,2,1]                   => 930240
[6,4,4,3,2,1]                   => 930240
[6,5,3,3,2,1]                   => 930240
[6,5,4,2,2,1]                   => 930240
[6,5,4,3,1,1]                   => 930240
[6,5,4,3,2]                     => 116280
[6,5,2,2,2,2,1]                 => 1162800
[6,5,4,2,1,1,1]                 => 4651200
[7,5,4,3,1]                     => 116280
[3,3,3,3,3,3,2]                 => 38760
[4,4,3,3,3,3]                   => 38760
[4,4,4,4,4]                     => 969
[5,5,5,5]                       => 285
[20]                            => 1
[8,6,4,2]                       => 6840
[10,6,4]                        => 380
[10,7,3]                        => 380
[9,7,4]                         => 380
[9,5,5,1]                       => 3420
[6,5,4,3,2,1]                   => 2441880
[6,3,3,3,3,2,1]                 => 1627920
[6,5,3,2,2,2,1]                 => 6511680
[6,5,4,3,1,1,1]                 => 6511680
[3,3,3,3,3,3,3]                 => 7752
[4,4,4,3,3,3]                   => 67830
[21]                            => 1
[11,7,3]                        => 420
[4,4,4,4,3,2,1]                 => 2238390
[6,4,3,3,3,2,1]                 => 8953560
[6,5,4,2,2,2,1]                 => 8953560
[6,5,4,3,2,1,1]                 => 26860680
[4,4,4,4,3,3]                   => 65835
[9,6,4,3]                       => 9240
[5,4,4,4,3,2,1]                 => 12113640
[6,5,3,3,3,2,1]                 => 12113640
[6,5,4,3,2,2,1]                 => 36340920
[9,6,5,3]                       => 10626
[8,6,5,3,1]                     => 212520
[6,4,4,4,3,2,1]                 => 16151520
[6,5,4,3,3,2,1]                 => 48454560
[3,3,3,3,3,3,3,3]               => 43263
[4,4,4,4,4,4]                   => 7084
[11,7,5,1]                      => 12144
[9,7,5,3]                       => 12144
[8,8,8]                         => 92
[5,5,5,4,3,2,1]                 => 21252000
[6,5,4,4,3,2,1]                 => 63756000
[9,7,5,3,1]                     => 303600
[10,7,5,3]                      => 13800
[6,5,5,4,3,2,1]                 => 82882800
[9,7,5,4,1]                     => 358800
[6,6,5,4,3,2,1]                 => 106563600
[7,6,5,4,3,2]                   => 9687600
[3,3,3,3,3,3,3,3,3]             => 246675
[7,6,5,4,3,2,1]                 => 271252800
[7,6,5,4,3,1,1,1]               => 994593600
[10,7,6,4,1]                    => 491400
[9,7,6,4,2]                     => 491400
[10,8,5,4,1]                    => 491400
[7,6,5,4,2,2,2,1]               => 1311055200
[10,8,6,4,1]                    => 570024
[9,7,5,5,3,1]                   => 8550360
[7,6,5,3,3,3,2,1]               => 1710072000
[11,8,6,4,1]                    => 657720
[10,8,6,4,2]                    => 657720
[11,8,6,5,1]                    => 755160
[4,4,4,4,4,4,4,4]               => 420732
[12,9,7,5,1]                    => 1113024
[13,9,7,5,1]                    => 1256640
[11,9,7,5,3,1]                  => 45239040
[11,8,7,5,4,1]                  => 45239040
[11,9,7,5,5,3]                  => 39480480
[11,9,7,7,5,3,3]                => 1466110800

-----------------------------------------------------------------------------
Created: May 31, 2016 at 14:57 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Jun 19, 2023 at 10:40 by Martin Rubey