*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000515

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of invariant set partitions when acting with a permutation of given cycle type.

-----------------------------------------------------------------------------
References: [1]   Bergeron, F., Labelle, G., Leroux, P. Combinatorial species and tree-like structures [[MathSciNet:1629341]]

-----------------------------------------------------------------------------
Code:
def statistic(la):
    Partitionspecies = species.PartitionSpecies().cycle_index_series()
    return Partitionspecies.count(la)


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 2
[1,1]                     => 2
[3]                       => 2
[2,1]                     => 3
[1,1,1]                   => 5
[4]                       => 3
[3,1]                     => 3
[2,2]                     => 7
[2,1,1]                   => 7
[1,1,1,1]                 => 15
[5]                       => 2
[4,1]                     => 4
[3,2]                     => 5
[3,1,1]                   => 7
[2,2,1]                   => 12
[2,1,1,1]                 => 20
[1,1,1,1,1]               => 52
[6]                       => 4
[5,1]                     => 3
[4,2]                     => 9
[4,1,1]                   => 9
[3,3]                     => 8
[3,2,1]                   => 10
[3,1,1,1]                 => 20
[2,2,2]                   => 31
[2,2,1,1]                 => 31
[2,1,1,1,1]               => 67
[1,1,1,1,1,1]             => 203
[7]                       => 2
[6,1]                     => 5
[5,2]                     => 5
[5,1,1]                   => 7
[4,3]                     => 7
[4,2,1]                   => 15
[4,1,1,1]                 => 25
[3,3,1]                   => 13
[3,2,2]                   => 19
[3,2,1,1]                 => 27
[3,1,1,1,1]               => 67
[2,2,2,1]                 => 59
[2,2,1,1,1]               => 97
[2,1,1,1,1,1]             => 255
[1,1,1,1,1,1,1]           => 877
[8]                       => 4
[7,1]                     => 3
[6,2]                     => 11
[6,1,1]                   => 11
[5,3]                     => 5
[5,2,1]                   => 10
[5,1,1,1]                 => 20
[4,4]                     => 16
[4,3,1]                   => 13
[4,2,2]                   => 38
[4,2,1,1]                 => 38
[4,1,1,1,1]               => 82
[3,3,2]                   => 21
[3,3,1,1]                 => 33
[3,2,2,1]                 => 43
[3,2,1,1,1]               => 87
[3,1,1,1,1,1]             => 255
[2,2,2,2]                 => 164
[2,2,2,1,1]               => 164
[2,2,1,1,1,1]             => 352
[2,1,1,1,1,1,1]           => 1080
[1,1,1,1,1,1,1,1]         => 4140
[9]                       => 3
[8,1]                     => 5
[7,2]                     => 5
[7,1,1]                   => 7
[6,3]                     => 12
[6,2,1]                   => 18
[6,1,1,1]                 => 30
[5,4]                     => 7
[5,3,1]                   => 10
[5,2,2]                   => 19
[5,2,1,1]                 => 27
[5,1,1,1,1]               => 67
[4,4,1]                   => 23
[4,3,2]                   => 24
[4,3,1,1]                 => 34
[4,2,2,1]                 => 71
[4,2,1,1,1]               => 117
[4,1,1,1,1,1]             => 307
[3,3,3]                   => 42
[3,3,2,1]                 => 46
[3,3,1,1,1]               => 102
[3,2,2,2]                 => 90
[3,2,2,1,1]               => 128
[3,2,1,1,1,1]             => 322
[3,1,1,1,1,1,1]           => 1080
[2,2,2,2,1]               => 339
[2,2,2,1,1,1]             => 549
[2,2,1,1,1,1,1]           => 1439
[2,1,1,1,1,1,1,1]         => 5017
[1,1,1,1,1,1,1,1,1]       => 21147
[10]                      => 4
[9,1]                     => 4
[8,2]                     => 11
[8,1,1]                   => 11
[7,3]                     => 5
[7,2,1]                   => 10
[7,1,1,1]                 => 20
[6,4]                     => 15
[6,3,1]                   => 19
[6,2,2]                   => 45
[6,2,1,1]                 => 45
[6,1,1,1,1]               => 97
[5,5]                     => 10
[5,4,1]                   => 13
[5,3,2]                   => 15
[5,3,1,1]                 => 27
[5,2,2,1]                 => 43
[5,2,1,1,1]               => 87
[5,1,1,1,1,1]             => 255
[4,4,2]                   => 55
[4,4,1,1]                 => 55
[4,3,3]                   => 29
[4,3,2,1]                 => 53
[4,3,1,1,1]               => 107
[4,2,2,2]                 => 195
[4,2,2,1,1]               => 195
[4,2,1,1,1,1]             => 419
[4,1,1,1,1,1,1]           => 1283
[3,3,3,1]                 => 73
[3,3,2,2]                 => 83
[3,3,2,1,1]               => 135
[3,3,1,1,1,1]             => 367
[3,2,2,2,1]               => 223
[3,2,2,1,1,1]             => 449
[3,2,1,1,1,1,1]           => 1335
[3,1,1,1,1,1,1,1]         => 5017
[2,2,2,2,2]               => 999
[2,2,2,2,1,1]             => 999
[2,2,2,1,1,1,1]           => 2119
[2,2,1,1,1,1,1,1]         => 6503
[2,1,1,1,1,1,1,1,1]       => 25287
[1,1,1,1,1,1,1,1,1,1]     => 115975
[11]                      => 2
[10,1]                    => 5
[9,2]                     => 7
[9,1,1]                   => 9
[8,3]                     => 9
[8,2,1]                   => 18
[8,1,1,1]                 => 30
[7,4]                     => 7
[7,3,1]                   => 10
[7,2,2]                   => 19
[7,2,1,1]                 => 27
[7,1,1,1,1]               => 67
[6,5]                     => 9
[6,4,1]                   => 23
[6,3,2]                   => 35
[6,3,1,1]                 => 47
[6,2,2,1]                 => 83
[6,2,1,1,1]               => 137
[6,1,1,1,1,1]             => 359
[5,5,1]                   => 15
[5,4,2]                   => 24
[5,4,1,1]                 => 34
[5,3,3]                   => 21
[5,3,2,1]                 => 37
[5,3,1,1,1]               => 87
[5,2,2,2]                 => 90
[5,2,2,1,1]               => 128
[5,2,1,1,1,1]             => 322
[5,1,1,1,1,1,1]           => 1080
[4,4,3]                   => 39
[4,4,2,1]                 => 98
[4,4,1,1,1]               => 162
[4,3,3,1]                 => 59
[4,3,2,2]                 => 109
[4,3,2,1,1]               => 155
[4,3,1,1,1,1]             => 389
[4,2,2,2,1]               => 398
[4,2,2,1,1,1]             => 646
[4,2,1,1,1,1,1]           => 1694
[4,1,1,1,1,1,1,1]         => 5894
[3,3,3,2]                 => 115
[3,3,3,1,1]               => 195
[3,3,2,2,1]               => 207
[3,3,2,1,1,1]             => 469
[3,3,1,1,1,1,1]           => 1491
[3,2,2,2,2]               => 503
[3,2,2,2,1,1]             => 713
[3,2,2,1,1,1,1]           => 1791
[3,2,1,1,1,1,1,1]         => 6097
[3,1,1,1,1,1,1,1,1]       => 25287
[2,2,2,2,2,1]             => 2210
[2,2,2,2,1,1,1]           => 3530
[2,2,2,1,1,1,1,1]         => 9170
[2,2,1,1,1,1,1,1,1]       => 32058
[2,1,1,1,1,1,1,1,1,1]     => 137122
[1,1,1,1,1,1,1,1,1,1,1]   => 678570
[12]                      => 6
[11,1]                    => 3
[10,2]                    => 11
[10,1,1]                  => 11
[9,3]                     => 10
[9,2,1]                   => 13
[9,1,1,1]                 => 25
[8,4]                     => 19
[8,3,1]                   => 16
[8,2,2]                   => 45
[8,2,1,1]                 => 45
[8,1,1,1,1]               => 97
[7,5]                     => 5
[7,4,1]                   => 13
[7,3,2]                   => 15
[7,3,1,1]                 => 27
[7,2,2,1]                 => 43
[7,2,1,1,1]               => 87
[7,1,1,1,1,1]             => 255
[6,6]                     => 28
[6,5,1]                   => 16
[6,4,2]                   => 56
[6,4,1,1]                 => 56
[6,3,3]                   => 58
[6,3,2,1]                 => 72
[6,3,1,1,1]               => 142
[6,2,2,2]                 => 226
[6,2,2,1,1]               => 226
[6,2,1,1,1,1]             => 486
[6,1,1,1,1,1,1]           => 1486
[5,5,2]                   => 25
[5,5,1,1]                 => 37
[5,4,3]                   => 20
[5,4,2,1]                 => 53
[5,4,1,1,1]               => 107
[5,3,3,1]                 => 46
[5,3,2,2]                 => 62
[5,3,2,1,1]               => 114
[5,3,1,1,1,1]             => 322
[5,2,2,2,1]               => 223
[5,2,2,1,1,1]             => 449
[5,2,1,1,1,1,1]           => 1335
[5,1,1,1,1,1,1,1]         => 5017
[4,4,4]                   => 111
[4,4,3,1]                 => 78
[4,4,2,2]                 => 261
[4,4,2,1,1]               => 261
[4,4,1,1,1,1]             => 561
[4,3,3,2]                 => 104
[4,3,3,1,1]               => 168
[4,3,2,2,1]               => 266
[4,3,2,1,1,1]             => 536
[4,3,1,1,1,1,1]           => 1590
[4,2,2,2,2]               => 1163
[4,2,2,2,1,1]             => 1163
[4,2,2,1,1,1,1]           => 2471
[4,2,1,1,1,1,1,1]         => 7583
[4,1,1,1,1,1,1,1,1]       => 29427
[3,3,3,3]                 => 268
[3,3,3,2,1]               => 268
[3,3,3,1,1,1]             => 634
[3,3,2,2,2]               => 406
[3,3,2,2,1,1]             => 670
[3,3,2,1,1,1,1]           => 1858
[3,3,1,1,1,1,1,1]         => 6706
[3,2,2,2,2,1]             => 1338
[3,2,2,2,1,1,1]           => 2668
[3,2,2,1,1,1,1,1]         => 7942
[3,2,1,1,1,1,1,1,1]       => 30304
[3,1,1,1,1,1,1,1,1,1]     => 137122
[2,2,2,2,2,2]             => 6841
[2,2,2,2,2,1,1]           => 6841
[2,2,2,2,1,1,1,1]         => 14325
[2,2,2,1,1,1,1,1,1]       => 43693
[2,2,1,1,1,1,1,1,1,1]     => 170689
[2,1,1,1,1,1,1,1,1,1,1]   => 794545
[1,1,1,1,1,1,1,1,1,1,1,1] => 4213597

-----------------------------------------------------------------------------
Created: May 26, 2016 at 21:32 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: May 26, 2016 at 21:32 by Martin Rubey