*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000512

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of invariant subsets of size 3 when acting with a permutation of given cycle type.

-----------------------------------------------------------------------------
References: [1]   Bergeron, F., Labelle, G., Leroux, P. Combinatorial species and tree-like structures [[MathSciNet:1629341]]

-----------------------------------------------------------------------------
Code:
def statistic(la):
    E = species.SetSpecies()
    E2 = species.CharacteristicSpecies(3)
    c = (E2*E).cycle_index_series()
    return c.count(la)

-----------------------------------------------------------------------------
Statistic values:

[2]                       => 0
[1,1]                     => 0
[3]                       => 1
[2,1]                     => 1
[1,1,1]                   => 1
[4]                       => 0
[3,1]                     => 1
[2,2]                     => 0
[2,1,1]                   => 2
[1,1,1,1]                 => 4
[5]                       => 0
[4,1]                     => 0
[3,2]                     => 1
[3,1,1]                   => 1
[2,2,1]                   => 2
[2,1,1,1]                 => 4
[1,1,1,1,1]               => 10
[6]                       => 0
[5,1]                     => 0
[4,2]                     => 0
[4,1,1]                   => 0
[3,3]                     => 2
[3,2,1]                   => 2
[3,1,1,1]                 => 2
[2,2,2]                   => 0
[2,2,1,1]                 => 4
[2,1,1,1,1]               => 8
[1,1,1,1,1,1]             => 20
[7]                       => 0
[6,1]                     => 0
[5,2]                     => 0
[5,1,1]                   => 0
[4,3]                     => 1
[4,2,1]                   => 1
[4,1,1,1]                 => 1
[3,3,1]                   => 2
[3,2,2]                   => 1
[3,2,1,1]                 => 3
[3,1,1,1,1]               => 5
[2,2,2,1]                 => 3
[2,2,1,1,1]               => 7
[2,1,1,1,1,1]             => 15
[1,1,1,1,1,1,1]           => 35
[8]                       => 0
[7,1]                     => 0
[6,2]                     => 0
[6,1,1]                   => 0
[5,3]                     => 1
[5,2,1]                   => 1
[5,1,1,1]                 => 1
[4,4]                     => 0
[4,3,1]                   => 1
[4,2,2]                   => 0
[4,2,1,1]                 => 2
[4,1,1,1,1]               => 4
[3,3,2]                   => 2
[3,3,1,1]                 => 2
[3,2,2,1]                 => 3
[3,2,1,1,1]               => 5
[3,1,1,1,1,1]             => 11
[2,2,2,2]                 => 0
[2,2,2,1,1]               => 6
[2,2,1,1,1,1]             => 12
[2,1,1,1,1,1,1]           => 26
[1,1,1,1,1,1,1,1]         => 56
[9]                       => 0
[8,1]                     => 0
[7,2]                     => 0
[7,1,1]                   => 0
[6,3]                     => 1
[6,2,1]                   => 1
[6,1,1,1]                 => 1
[5,4]                     => 0
[5,3,1]                   => 1
[5,2,2]                   => 0
[5,2,1,1]                 => 2
[5,1,1,1,1]               => 4
[4,4,1]                   => 0
[4,3,2]                   => 1
[4,3,1,1]                 => 1
[4,2,2,1]                 => 2
[4,2,1,1,1]               => 4
[4,1,1,1,1,1]             => 10
[3,3,3]                   => 3
[3,3,2,1]                 => 3
[3,3,1,1,1]               => 3
[3,2,2,2]                 => 1
[3,2,2,1,1]               => 5
[3,2,1,1,1,1]             => 9
[3,1,1,1,1,1,1]           => 21
[2,2,2,2,1]               => 4
[2,2,2,1,1,1]             => 10
[2,2,1,1,1,1,1]           => 20
[2,1,1,1,1,1,1,1]         => 42
[1,1,1,1,1,1,1,1,1]       => 84
[10]                      => 0
[9,1]                     => 0
[8,2]                     => 0
[8,1,1]                   => 0
[7,3]                     => 1
[7,2,1]                   => 1
[7,1,1,1]                 => 1
[6,4]                     => 0
[6,3,1]                   => 1
[6,2,2]                   => 0
[6,2,1,1]                 => 2
[6,1,1,1,1]               => 4
[5,5]                     => 0
[5,4,1]                   => 0
[5,3,2]                   => 1
[5,3,1,1]                 => 1
[5,2,2,1]                 => 2
[5,2,1,1,1]               => 4
[5,1,1,1,1,1]             => 10
[4,4,2]                   => 0
[4,4,1,1]                 => 0
[4,3,3]                   => 2
[4,3,2,1]                 => 2
[4,3,1,1,1]               => 2
[4,2,2,2]                 => 0
[4,2,2,1,1]               => 4
[4,2,1,1,1,1]             => 8
[4,1,1,1,1,1,1]           => 20
[3,3,3,1]                 => 3
[3,3,2,2]                 => 2
[3,3,2,1,1]               => 4
[3,3,1,1,1,1]             => 6
[3,2,2,2,1]               => 4
[3,2,2,1,1,1]             => 8
[3,2,1,1,1,1,1]           => 16
[3,1,1,1,1,1,1,1]         => 36
[2,2,2,2,2]               => 0
[2,2,2,2,1,1]             => 8
[2,2,2,1,1,1,1]           => 16
[2,2,1,1,1,1,1,1]         => 32
[2,1,1,1,1,1,1,1,1]       => 64
[1,1,1,1,1,1,1,1,1,1]     => 120
[11]                      => 0
[10,1]                    => 0
[9,2]                     => 0
[9,1,1]                   => 0
[8,3]                     => 1
[8,2,1]                   => 1
[8,1,1,1]                 => 1
[7,4]                     => 0
[7,3,1]                   => 1
[7,2,2]                   => 0
[7,2,1,1]                 => 2
[7,1,1,1,1]               => 4
[6,5]                     => 0
[6,4,1]                   => 0
[6,3,2]                   => 1
[6,3,1,1]                 => 1
[6,2,2,1]                 => 2
[6,2,1,1,1]               => 4
[6,1,1,1,1,1]             => 10
[5,5,1]                   => 0
[5,4,2]                   => 0
[5,4,1,1]                 => 0
[5,3,3]                   => 2
[5,3,2,1]                 => 2
[5,3,1,1,1]               => 2
[5,2,2,2]                 => 0
[5,2,2,1,1]               => 4
[5,2,1,1,1,1]             => 8
[5,1,1,1,1,1,1]           => 20
[4,4,3]                   => 1
[4,4,2,1]                 => 1
[4,4,1,1,1]               => 1
[4,3,3,1]                 => 2
[4,3,2,2]                 => 1
[4,3,2,1,1]               => 3
[4,3,1,1,1,1]             => 5
[4,2,2,2,1]               => 3
[4,2,2,1,1,1]             => 7
[4,2,1,1,1,1,1]           => 15
[4,1,1,1,1,1,1,1]         => 35
[3,3,3,2]                 => 3
[3,3,3,1,1]               => 3
[3,3,2,2,1]               => 4
[3,3,2,1,1,1]             => 6
[3,3,1,1,1,1,1]           => 12
[3,2,2,2,2]               => 1
[3,2,2,2,1,1]             => 7
[3,2,2,1,1,1,1]           => 13
[3,2,1,1,1,1,1,1]         => 27
[3,1,1,1,1,1,1,1,1]       => 57
[2,2,2,2,2,1]             => 5
[2,2,2,2,1,1,1]           => 13
[2,2,2,1,1,1,1,1]         => 25
[2,2,1,1,1,1,1,1,1]       => 49
[2,1,1,1,1,1,1,1,1,1]     => 93
[1,1,1,1,1,1,1,1,1,1,1]   => 165
[12]                      => 0
[11,1]                    => 0
[10,2]                    => 0
[10,1,1]                  => 0
[9,3]                     => 1
[9,2,1]                   => 1
[9,1,1,1]                 => 1
[8,4]                     => 0
[8,3,1]                   => 1
[8,2,2]                   => 0
[8,2,1,1]                 => 2
[8,1,1,1,1]               => 4
[7,5]                     => 0
[7,4,1]                   => 0
[7,3,2]                   => 1
[7,3,1,1]                 => 1
[7,2,2,1]                 => 2
[7,2,1,1,1]               => 4
[7,1,1,1,1,1]             => 10
[6,6]                     => 0
[6,5,1]                   => 0
[6,4,2]                   => 0
[6,4,1,1]                 => 0
[6,3,3]                   => 2
[6,3,2,1]                 => 2
[6,3,1,1,1]               => 2
[6,2,2,2]                 => 0
[6,2,2,1,1]               => 4
[6,2,1,1,1,1]             => 8
[6,1,1,1,1,1,1]           => 20
[5,5,2]                   => 0
[5,5,1,1]                 => 0
[5,4,3]                   => 1
[5,4,2,1]                 => 1
[5,4,1,1,1]               => 1
[5,3,3,1]                 => 2
[5,3,2,2]                 => 1
[5,3,2,1,1]               => 3
[5,3,1,1,1,1]             => 5
[5,2,2,2,1]               => 3
[5,2,2,1,1,1]             => 7
[5,2,1,1,1,1,1]           => 15
[5,1,1,1,1,1,1,1]         => 35
[4,4,4]                   => 0
[4,4,3,1]                 => 1
[4,4,2,2]                 => 0
[4,4,2,1,1]               => 2
[4,4,1,1,1,1]             => 4
[4,3,3,2]                 => 2
[4,3,3,1,1]               => 2
[4,3,2,2,1]               => 3
[4,3,2,1,1,1]             => 5
[4,3,1,1,1,1,1]           => 11
[4,2,2,2,2]               => 0
[4,2,2,2,1,1]             => 6
[4,2,2,1,1,1,1]           => 12
[4,2,1,1,1,1,1,1]         => 26
[4,1,1,1,1,1,1,1,1]       => 56
[3,3,3,3]                 => 4
[3,3,3,2,1]               => 4
[3,3,3,1,1,1]             => 4
[3,3,2,2,2]               => 2
[3,3,2,2,1,1]             => 6
[3,3,2,1,1,1,1]           => 10
[3,3,1,1,1,1,1,1]         => 22
[3,2,2,2,2,1]             => 5
[3,2,2,2,1,1,1]           => 11
[3,2,2,1,1,1,1,1]         => 21
[3,2,1,1,1,1,1,1,1]       => 43
[3,1,1,1,1,1,1,1,1,1]     => 85
[2,2,2,2,2,2]             => 0
[2,2,2,2,2,1,1]           => 10
[2,2,2,2,1,1,1,1]         => 20
[2,2,2,1,1,1,1,1,1]       => 38
[2,2,1,1,1,1,1,1,1,1]     => 72
[2,1,1,1,1,1,1,1,1,1,1]   => 130
[1,1,1,1,1,1,1,1,1,1,1,1] => 220

-----------------------------------------------------------------------------
Created: May 26, 2016 at 20:58 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: May 26, 2016 at 20:58 by Martin Rubey