*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000508

-----------------------------------------------------------------------------
Collection: Standard tableaux

-----------------------------------------------------------------------------
Description: Eigenvalues of the random-to-random operator acting on a simple module.

The simple module of the symmetric group indexed by a partition $\lambda$ has dimension equal to the number of standard tableaux of shape $\lambda$. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape $\lambda$; this statistic gives all the eigenvalues of the operator acting on the module [1].

-----------------------------------------------------------------------------
References: [1]   Dieker, A. B., Saliola, F. Spectral analysis of random-to-random Markov chains [[arXiv:1509.08580]]
[2] Eigenvalues of the random-to-random operator acting on the regular representation  Eigenvalues of the random-to-random operator acting on the regular representation. [[St000500]]
[3] The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition  The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. [[St000046]]

-----------------------------------------------------------------------------
Code:
def diagonal_index_of_partition(la):
    return sum((j - i) for (i, j) in la.cells())

def binomial_shifted_diagonal_index_of_partition(partition):
    return binomial(partition.size() + 1, 2) + diagonal_index_of_partition(partition)

def is_desarrangement_tableau(t):
    if t.size() == 0:
        return True
    descents = t.standard_descents()
    ascents = [i for i in t.entries() if i not in descents]
    return min(ascents) % 2 == 0

def r2r_statistic_on_standard_tableaux(t):
    # remove 1 and rectify until we get a desarrangement tableau
    s = copy(t)
    while not is_desarrangement_tableau(s):
        s = SkewTableau([[(i-1 if i > 1 else None) for i in row] for row in s])
        s = StandardTableau(s.rectify())
    b_t = binomial_shifted_diagonal_index_of_partition(t.shape())
    b_s = binomial_shifted_diagonal_index_of_partition(s.shape())
    return b_t - b_s

def statistic(t):
    return r2r_statistic_on_standard_tableaux(t)

-----------------------------------------------------------------------------
Statistic values:

[[1,2]]                           => 4
[[1],[2]]                         => 0
[[1,2,3]]                         => 9
[[1,3],[2]]                       => 0
[[1,2],[3]]                       => 4
[[1],[2],[3]]                     => 1
[[1,2,3,4]]                       => 16
[[1,3,4],[2]]                     => 0
[[1,2,4],[3]]                     => 6
[[1,2,3],[4]]                     => 10
[[1,3],[2,4]]                     => 0
[[1,2],[3,4]]                     => 4
[[1,4],[2],[3]]                   => 2
[[1,3],[2],[4]]                   => 0
[[1,2],[3],[4]]                   => 6
[[1],[2],[3],[4]]                 => 0
[[1,2,3,4,5]]                     => 25
[[1,3,4,5],[2]]                   => 0
[[1,2,4,5],[3]]                   => 8
[[1,2,3,5],[4]]                   => 14
[[1,2,3,4],[5]]                   => 18
[[1,3,5],[2,4]]                   => 0
[[1,2,5],[3,4]]                   => 5
[[1,3,4],[2,5]]                   => 0
[[1,2,4],[3,5]]                   => 7
[[1,2,3],[4,5]]                   => 11
[[1,4,5],[2],[3]]                 => 3
[[1,3,5],[2],[4]]                 => 0
[[1,2,5],[3],[4]]                 => 9
[[1,3,4],[2],[5]]                 => 0
[[1,2,4],[3],[5]]                 => 7
[[1,2,3],[4],[5]]                 => 13
[[1,4],[2,5],[3]]                 => 3
[[1,3],[2,5],[4]]                 => 0
[[1,2],[3,5],[4]]                 => 7
[[1,3],[2,4],[5]]                 => 0
[[1,2],[3,4],[5]]                 => 5
[[1,5],[2],[3],[4]]               => 0
[[1,4],[2],[3],[5]]               => 2
[[1,3],[2],[4],[5]]               => 0
[[1,2],[3],[4],[5]]               => 6
[[1],[2],[3],[4],[5]]             => 1
[[1,2,3,4,5,6]]                   => 36
[[1,3,4,5,6],[2]]                 => 0
[[1,2,4,5,6],[3]]                 => 10
[[1,2,3,5,6],[4]]                 => 18
[[1,2,3,4,6],[5]]                 => 24
[[1,2,3,4,5],[6]]                 => 28
[[1,3,5,6],[2,4]]                 => 0
[[1,2,5,6],[3,4]]                 => 6
[[1,3,4,6],[2,5]]                 => 0
[[1,2,4,6],[3,5]]                 => 9
[[1,2,3,6],[4,5]]                 => 14
[[1,3,4,5],[2,6]]                 => 0
[[1,2,4,5],[3,6]]                 => 9
[[1,2,3,5],[4,6]]                 => 16
[[1,2,3,4],[5,6]]                 => 20
[[1,4,5,6],[2],[3]]               => 4
[[1,3,5,6],[2],[4]]               => 0
[[1,2,5,6],[3],[4]]               => 12
[[1,3,4,6],[2],[5]]               => 0
[[1,2,4,6],[3],[5]]               => 9
[[1,2,3,6],[4],[5]]               => 18
[[1,3,4,5],[2],[6]]               => 0
[[1,2,4,5],[3],[6]]               => 9
[[1,2,3,5],[4],[6]]               => 16
[[1,2,3,4],[5],[6]]               => 22
[[1,3,5],[2,4,6]]                 => 0
[[1,2,5],[3,4,6]]                 => 7
[[1,3,4],[2,5,6]]                 => 0
[[1,2,4],[3,5,6]]                 => 7
[[1,2,3],[4,5,6]]                 => 12
[[1,4,6],[2,5],[3]]               => 4
[[1,3,6],[2,5],[4]]               => 0
[[1,2,6],[3,5],[4]]               => 9
[[1,3,6],[2,4],[5]]               => 0
[[1,2,6],[3,4],[5]]               => 6
[[1,4,5],[2,6],[3]]               => 4
[[1,3,5],[2,6],[4]]               => 0
[[1,2,5],[3,6],[4]]               => 11
[[1,3,4],[2,6],[5]]               => 0
[[1,2,4],[3,6],[5]]               => 8
[[1,2,3],[4,6],[5]]               => 15
[[1,3,5],[2,4],[6]]               => 0
[[1,2,5],[3,4],[6]]               => 6
[[1,3,4],[2,5],[6]]               => 0
[[1,2,4],[3,5],[6]]               => 8
[[1,2,3],[4,5],[6]]               => 13
[[1,5,6],[2],[3],[4]]             => 0
[[1,4,6],[2],[3],[5]]             => 3
[[1,3,6],[2],[4],[5]]             => 0
[[1,2,6],[3],[4],[5]]             => 8
[[1,4,5],[2],[3],[6]]             => 3
[[1,3,5],[2],[4],[6]]             => 0
[[1,2,5],[3],[4],[6]]             => 10
[[1,3,4],[2],[5],[6]]             => 0
[[1,2,4],[3],[5],[6]]             => 8
[[1,2,3],[4],[5],[6]]             => 14
[[1,4],[2,5],[3,6]]               => 5
[[1,3],[2,5],[4,6]]               => 0
[[1,2],[3,5],[4,6]]               => 8
[[1,3],[2,4],[5,6]]               => 0
[[1,2],[3,4],[5,6]]               => 5
[[1,5],[2,6],[3],[4]]             => 0
[[1,4],[2,6],[3],[5]]             => 3
[[1,3],[2,6],[4],[5]]             => 0
[[1,2],[3,6],[4],[5]]             => 6
[[1,4],[2,5],[3],[6]]             => 3
[[1,3],[2,5],[4],[6]]             => 0
[[1,2],[3,5],[4],[6]]             => 8
[[1,3],[2,4],[5],[6]]             => 0
[[1,2],[3,4],[5],[6]]             => 6
[[1,6],[2],[3],[4],[5]]           => 2
[[1,5],[2],[3],[4],[6]]           => 0
[[1,4],[2],[3],[5],[6]]           => 2
[[1,3],[2],[4],[5],[6]]           => 0
[[1,2],[3],[4],[5],[6]]           => 8
[[1],[2],[3],[4],[5],[6]]         => 0
[[1,2,3,4,5,6,7]]                 => 49
[[1,3,4,5,6,7],[2]]               => 0
[[1,2,4,5,6,7],[3]]               => 12
[[1,2,3,5,6,7],[4]]               => 22
[[1,2,3,4,6,7],[5]]               => 30
[[1,2,3,4,5,7],[6]]               => 36
[[1,2,3,4,5,6],[7]]               => 40
[[1,3,5,6,7],[2,4]]               => 0
[[1,2,5,6,7],[3,4]]               => 7
[[1,3,4,6,7],[2,5]]               => 0
[[1,2,4,6,7],[3,5]]               => 11
[[1,2,3,6,7],[4,5]]               => 17
[[1,3,4,5,7],[2,6]]               => 0
[[1,2,4,5,7],[3,6]]               => 11
[[1,2,3,5,7],[4,6]]               => 20
[[1,2,3,4,7],[5,6]]               => 25
[[1,3,4,5,6],[2,7]]               => 0
[[1,2,4,5,6],[3,7]]               => 11
[[1,2,3,5,6],[4,7]]               => 20
[[1,2,3,4,6],[5,7]]               => 27
[[1,2,3,4,5],[6,7]]               => 31
[[1,4,5,6,7],[2],[3]]             => 5
[[1,3,5,6,7],[2],[4]]             => 0
[[1,2,5,6,7],[3],[4]]             => 15
[[1,3,4,6,7],[2],[5]]             => 0
[[1,2,4,6,7],[3],[5]]             => 11
[[1,2,3,6,7],[4],[5]]             => 23
[[1,3,4,5,7],[2],[6]]             => 0
[[1,2,4,5,7],[3],[6]]             => 11
[[1,2,3,5,7],[4],[6]]             => 20
[[1,2,3,4,7],[5],[6]]             => 29
[[1,3,4,5,6],[2],[7]]             => 0
[[1,2,4,5,6],[3],[7]]             => 11
[[1,2,3,5,6],[4],[7]]             => 20
[[1,2,3,4,6],[5],[7]]             => 27
[[1,2,3,4,5],[6],[7]]             => 33
[[1,3,5,7],[2,4,6]]               => 0
[[1,2,5,7],[3,4,6]]               => 8
[[1,3,4,7],[2,5,6]]               => 0
[[1,2,4,7],[3,5,6]]               => 8
[[1,2,3,7],[4,5,6]]               => 14
[[1,3,5,6],[2,4,7]]               => 0
[[1,2,5,6],[3,4,7]]               => 8
[[1,3,4,6],[2,5,7]]               => 0
[[1,2,4,6],[3,5,7]]               => 10
[[1,2,3,6],[4,5,7]]               => 17
[[1,3,4,5],[2,6,7]]               => 0
[[1,2,4,5],[3,6,7]]               => 10
[[1,2,3,5],[4,6,7]]               => 17
[[1,2,3,4],[5,6,7]]               => 22
[[1,4,6,7],[2,5],[3]]             => 5
[[1,3,6,7],[2,5],[4]]             => 0
[[1,2,6,7],[3,5],[4]]             => 11
[[1,3,6,7],[2,4],[5]]             => 0
[[1,2,6,7],[3,4],[5]]             => 7
[[1,4,5,7],[2,6],[3]]             => 5
[[1,3,5,7],[2,6],[4]]             => 0
[[1,2,5,7],[3,6],[4]]             => 14
[[1,3,4,7],[2,6],[5]]             => 0
[[1,2,4,7],[3,6],[5]]             => 10
[[1,2,3,7],[4,6],[5]]             => 19
[[1,3,5,7],[2,4],[6]]             => 0
[[1,2,5,7],[3,4],[6]]             => 7
[[1,3,4,7],[2,5],[6]]             => 0
[[1,2,4,7],[3,5],[6]]             => 10
[[1,2,3,7],[4,5],[6]]             => 16
[[1,4,5,6],[2,7],[3]]             => 5
[[1,3,5,6],[2,7],[4]]             => 0
[[1,2,5,6],[3,7],[4]]             => 14
[[1,3,4,6],[2,7],[5]]             => 0
[[1,2,4,6],[3,7],[5]]             => 10
[[1,2,3,6],[4,7],[5]]             => 21
[[1,3,4,5],[2,7],[6]]             => 0
[[1,2,4,5],[3,7],[6]]             => 10
[[1,2,3,5],[4,7],[6]]             => 18
[[1,2,3,4],[5,7],[6]]             => 25
[[1,3,5,6],[2,4],[7]]             => 0
[[1,2,5,6],[3,4],[7]]             => 7
[[1,3,4,6],[2,5],[7]]             => 0
[[1,2,4,6],[3,5],[7]]             => 10
[[1,2,3,6],[4,5],[7]]             => 16
[[1,3,4,5],[2,6],[7]]             => 0
[[1,2,4,5],[3,6],[7]]             => 10
[[1,2,3,5],[4,6],[7]]             => 18
[[1,2,3,4],[5,6],[7]]             => 23
[[1,5,6,7],[2],[3],[4]]           => 0
[[1,4,6,7],[2],[3],[5]]           => 4
[[1,3,6,7],[2],[4],[5]]           => 0
[[1,2,6,7],[3],[4],[5]]           => 10
[[1,4,5,7],[2],[3],[6]]           => 4
[[1,3,5,7],[2],[4],[6]]           => 0
[[1,2,5,7],[3],[4],[6]]           => 13
[[1,3,4,7],[2],[5],[6]]           => 0
[[1,2,4,7],[3],[5],[6]]           => 10
[[1,2,3,7],[4],[5],[6]]           => 18
[[1,4,5,6],[2],[3],[7]]           => 4
[[1,3,5,6],[2],[4],[7]]           => 0
[[1,2,5,6],[3],[4],[7]]           => 13
[[1,3,4,6],[2],[5],[7]]           => 0
[[1,2,4,6],[3],[5],[7]]           => 10
[[1,2,3,6],[4],[5],[7]]           => 20
[[1,3,4,5],[2],[6],[7]]           => 0
[[1,2,4,5],[3],[6],[7]]           => 10
[[1,2,3,5],[4],[6],[7]]           => 18
[[1,2,3,4],[5],[6],[7]]           => 24
[[1,4,6],[2,5,7],[3]]             => 5
[[1,3,6],[2,5,7],[4]]             => 0
[[1,2,6],[3,5,7],[4]]             => 12
[[1,3,6],[2,4,7],[5]]             => 0
[[1,2,6],[3,4,7],[5]]             => 8
[[1,4,5],[2,6,7],[3]]             => 5
[[1,3,5],[2,6,7],[4]]             => 0
[[1,2,5],[3,6,7],[4]]             => 12
[[1,3,4],[2,6,7],[5]]             => 0
[[1,2,4],[3,6,7],[5]]             => 8
[[1,2,3],[4,6,7],[5]]             => 17
[[1,3,5],[2,4,7],[6]]             => 0
[[1,2,5],[3,4,7],[6]]             => 8
[[1,3,4],[2,5,7],[6]]             => 0
[[1,2,4],[3,5,7],[6]]             => 8
[[1,2,3],[4,5,7],[6]]             => 14
[[1,3,5],[2,4,6],[7]]             => 0
[[1,2,5],[3,4,6],[7]]             => 8
[[1,3,4],[2,5,6],[7]]             => 0
[[1,2,4],[3,5,6],[7]]             => 8
[[1,2,3],[4,5,6],[7]]             => 14
[[1,4,7],[2,5],[3,6]]             => 6
[[1,3,7],[2,5],[4,6]]             => 0
[[1,2,7],[3,5],[4,6]]             => 10
[[1,3,7],[2,4],[5,6]]             => 0
[[1,2,7],[3,4],[5,6]]             => 6
[[1,4,6],[2,5],[3,7]]             => 6
[[1,3,6],[2,5],[4,7]]             => 0
[[1,2,6],[3,5],[4,7]]             => 10
[[1,3,6],[2,4],[5,7]]             => 0
[[1,2,6],[3,4],[5,7]]             => 6
[[1,4,5],[2,6],[3,7]]             => 6
[[1,3,5],[2,6],[4,7]]             => 0
[[1,2,5],[3,6],[4,7]]             => 14
[[1,3,4],[2,6],[5,7]]             => 0
[[1,2,4],[3,6],[5,7]]             => 9
[[1,2,3],[4,6],[5,7]]             => 17
[[1,3,5],[2,4],[6,7]]             => 0
[[1,2,5],[3,4],[6,7]]             => 6
[[1,3,4],[2,5],[6,7]]             => 0
[[1,2,4],[3,5],[6,7]]             => 9
[[1,2,3],[4,5],[6,7]]             => 14
[[1,5,7],[2,6],[3],[4]]           => 0
[[1,4,7],[2,6],[3],[5]]           => 4
[[1,3,7],[2,6],[4],[5]]           => 0
[[1,2,7],[3,6],[4],[5]]           => 7
[[1,4,7],[2,5],[3],[6]]           => 4
[[1,3,7],[2,5],[4],[6]]           => 0
[[1,2,7],[3,5],[4],[6]]           => 10
[[1,3,7],[2,4],[5],[6]]           => 0
[[1,2,7],[3,4],[5],[6]]           => 7
[[1,5,6],[2,7],[3],[4]]           => 0
[[1,4,6],[2,7],[3],[5]]           => 4
[[1,3,6],[2,7],[4],[5]]           => 0
[[1,2,6],[3,7],[4],[5]]           => 9
[[1,4,5],[2,7],[3],[6]]           => 4
[[1,3,5],[2,7],[4],[6]]           => 0
[[1,2,5],[3,7],[4],[6]]           => 12
[[1,3,4],[2,7],[5],[6]]           => 0
[[1,2,4],[3,7],[5],[6]]           => 9
[[1,2,3],[4,7],[5],[6]]           => 15
[[1,4,6],[2,5],[3],[7]]           => 4
[[1,3,6],[2,5],[4],[7]]           => 0
[[1,2,6],[3,5],[4],[7]]           => 10
[[1,3,6],[2,4],[5],[7]]           => 0
[[1,2,6],[3,4],[5],[7]]           => 7
[[1,4,5],[2,6],[3],[7]]           => 4
[[1,3,5],[2,6],[4],[7]]           => 0
[[1,2,5],[3,6],[4],[7]]           => 12
[[1,3,4],[2,6],[5],[7]]           => 0
[[1,2,4],[3,6],[5],[7]]           => 9
[[1,2,3],[4,6],[5],[7]]           => 17
[[1,3,5],[2,4],[6],[7]]           => 0
[[1,2,5],[3,4],[6],[7]]           => 7
[[1,3,4],[2,5],[6],[7]]           => 0
[[1,2,4],[3,5],[6],[7]]           => 9
[[1,2,3],[4,5],[6],[7]]           => 15
[[1,6,7],[2],[3],[4],[5]]         => 3
[[1,5,7],[2],[3],[4],[6]]         => 0
[[1,4,7],[2],[3],[5],[6]]         => 3
[[1,3,7],[2],[4],[5],[6]]         => 0
[[1,2,7],[3],[4],[5],[6]]         => 11
[[1,5,6],[2],[3],[4],[7]]         => 0
[[1,4,6],[2],[3],[5],[7]]         => 3
[[1,3,6],[2],[4],[5],[7]]         => 0
[[1,2,6],[3],[4],[5],[7]]         => 9
[[1,4,5],[2],[3],[6],[7]]         => 3
[[1,3,5],[2],[4],[6],[7]]         => 0
[[1,2,5],[3],[4],[6],[7]]         => 11
[[1,3,4],[2],[5],[6],[7]]         => 0
[[1,2,4],[3],[5],[6],[7]]         => 9
[[1,2,3],[4],[5],[6],[7]]         => 17
[[1,5],[2,6],[3,7],[4]]           => 0
[[1,4],[2,6],[3,7],[5]]           => 4
[[1,3],[2,6],[4,7],[5]]           => 0
[[1,2],[3,6],[4,7],[5]]           => 6
[[1,4],[2,5],[3,7],[6]]           => 4
[[1,3],[2,5],[4,7],[6]]           => 0
[[1,2],[3,5],[4,7],[6]]           => 9
[[1,3],[2,4],[5,7],[6]]           => 0
[[1,2],[3,4],[5,7],[6]]           => 6
[[1,4],[2,5],[3,6],[7]]           => 6
[[1,3],[2,5],[4,6],[7]]           => 0
[[1,2],[3,5],[4,6],[7]]           => 9
[[1,3],[2,4],[5,6],[7]]           => 0
[[1,2],[3,4],[5,6],[7]]           => 6
[[1,6],[2,7],[3],[4],[5]]         => 3
[[1,5],[2,7],[3],[4],[6]]         => 0
[[1,4],[2,7],[3],[5],[6]]         => 3
[[1,3],[2,7],[4],[5],[6]]         => 0
[[1,2],[3,7],[4],[5],[6]]         => 9
[[1,5],[2,6],[3],[4],[7]]         => 0
[[1,4],[2,6],[3],[5],[7]]         => 3
[[1,3],[2,6],[4],[5],[7]]         => 0
[[1,2],[3,6],[4],[5],[7]]         => 7
[[1,4],[2,5],[3],[6],[7]]         => 3
[[1,3],[2,5],[4],[6],[7]]         => 0
[[1,2],[3,5],[4],[6],[7]]         => 9
[[1,3],[2,4],[5],[6],[7]]         => 0
[[1,2],[3,4],[5],[6],[7]]         => 7
[[1,7],[2],[3],[4],[5],[6]]       => 0
[[1,6],[2],[3],[4],[5],[7]]       => 2
[[1,5],[2],[3],[4],[6],[7]]       => 0
[[1,4],[2],[3],[5],[6],[7]]       => 2
[[1,3],[2],[4],[5],[6],[7]]       => 0
[[1,2],[3],[4],[5],[6],[7]]       => 8
[[1],[2],[3],[4],[5],[6],[7]]     => 1
[[1,2,3,4,5,6,7,8]]               => 64
[[1,3,4,5,6,7,8],[2]]             => 0
[[1,2,4,5,6,7,8],[3]]             => 14
[[1,2,3,5,6,7,8],[4]]             => 26
[[1,2,3,4,6,7,8],[5]]             => 36
[[1,2,3,4,5,7,8],[6]]             => 44
[[1,2,3,4,5,6,8],[7]]             => 50
[[1,2,3,4,5,6,7],[8]]             => 54
[[1,3,5,6,7,8],[2,4]]             => 0
[[1,2,5,6,7,8],[3,4]]             => 8
[[1,3,4,6,7,8],[2,5]]             => 0
[[1,2,4,6,7,8],[3,5]]             => 13
[[1,2,3,6,7,8],[4,5]]             => 20
[[1,3,4,5,7,8],[2,6]]             => 0
[[1,2,4,5,7,8],[3,6]]             => 13
[[1,2,3,5,7,8],[4,6]]             => 24
[[1,2,3,4,7,8],[5,6]]             => 30
[[1,3,4,5,6,8],[2,7]]             => 0
[[1,2,4,5,6,8],[3,7]]             => 13
[[1,2,3,5,6,8],[4,7]]             => 24
[[1,2,3,4,6,8],[5,7]]             => 33
[[1,2,3,4,5,8],[6,7]]             => 38
[[1,3,4,5,6,7],[2,8]]             => 0
[[1,2,4,5,6,7],[3,8]]             => 13
[[1,2,3,5,6,7],[4,8]]             => 24
[[1,2,3,4,6,7],[5,8]]             => 33
[[1,2,3,4,5,7],[6,8]]             => 40
[[1,2,3,4,5,6],[7,8]]             => 44
[[1,4,5,6,7,8],[2],[3]]           => 6
[[1,3,5,6,7,8],[2],[4]]           => 0
[[1,2,5,6,7,8],[3],[4]]           => 18
[[1,3,4,6,7,8],[2],[5]]           => 0
[[1,2,4,6,7,8],[3],[5]]           => 13
[[1,2,3,6,7,8],[4],[5]]           => 28
[[1,3,4,5,7,8],[2],[6]]           => 0
[[1,2,4,5,7,8],[3],[6]]           => 13
[[1,2,3,5,7,8],[4],[6]]           => 24
[[1,2,3,4,7,8],[5],[6]]           => 36
[[1,3,4,5,6,8],[2],[7]]           => 0
[[1,2,4,5,6,8],[3],[7]]           => 13
[[1,2,3,5,6,8],[4],[7]]           => 24
[[1,2,3,4,6,8],[5],[7]]           => 33
[[1,2,3,4,5,8],[6],[7]]           => 42
[[1,3,4,5,6,7],[2],[8]]           => 0
[[1,2,4,5,6,7],[3],[8]]           => 13
[[1,2,3,5,6,7],[4],[8]]           => 24
[[1,2,3,4,6,7],[5],[8]]           => 33
[[1,2,3,4,5,7],[6],[8]]           => 40
[[1,2,3,4,5,6],[7],[8]]           => 46
[[1,3,5,7,8],[2,4,6]]             => 0
[[1,2,5,7,8],[3,4,6]]             => 9
[[1,3,4,7,8],[2,5,6]]             => 0
[[1,2,4,7,8],[3,5,6]]             => 9
[[1,2,3,7,8],[4,5,6]]             => 16
[[1,3,5,6,8],[2,4,7]]             => 0
[[1,2,5,6,8],[3,4,7]]             => 9
[[1,3,4,6,8],[2,5,7]]             => 0
[[1,2,4,6,8],[3,5,7]]             => 12
[[1,2,3,6,8],[4,5,7]]             => 20
[[1,3,4,5,8],[2,6,7]]             => 0
[[1,2,4,5,8],[3,6,7]]             => 12
[[1,2,3,5,8],[4,6,7]]             => 20
[[1,2,3,4,8],[5,6,7]]             => 26
[[1,3,5,6,7],[2,4,8]]             => 0
[[1,2,5,6,7],[3,4,8]]             => 9
[[1,3,4,6,7],[2,5,8]]             => 0
[[1,2,4,6,7],[3,5,8]]             => 12
[[1,2,3,6,7],[4,5,8]]             => 20
[[1,3,4,5,7],[2,6,8]]             => 0
[[1,2,4,5,7],[3,6,8]]             => 12
[[1,2,3,5,7],[4,6,8]]             => 22
[[1,2,3,4,7],[5,6,8]]             => 29
[[1,3,4,5,6],[2,7,8]]             => 0
[[1,2,4,5,6],[3,7,8]]             => 12
[[1,2,3,5,6],[4,7,8]]             => 22
[[1,2,3,4,6],[5,7,8]]             => 29
[[1,2,3,4,5],[6,7,8]]             => 34
[[1,4,6,7,8],[2,5],[3]]           => 6
[[1,3,6,7,8],[2,5],[4]]           => 0
[[1,2,6,7,8],[3,5],[4]]           => 13
[[1,3,6,7,8],[2,4],[5]]           => 0
[[1,2,6,7,8],[3,4],[5]]           => 8
[[1,4,5,7,8],[2,6],[3]]           => 6
[[1,3,5,7,8],[2,6],[4]]           => 0
[[1,2,5,7,8],[3,6],[4]]           => 17
[[1,3,4,7,8],[2,6],[5]]           => 0
[[1,2,4,7,8],[3,6],[5]]           => 12
[[1,2,3,7,8],[4,6],[5]]           => 23
[[1,3,5,7,8],[2,4],[6]]           => 0
[[1,2,5,7,8],[3,4],[6]]           => 8
[[1,3,4,7,8],[2,5],[6]]           => 0
[[1,2,4,7,8],[3,5],[6]]           => 12
[[1,2,3,7,8],[4,5],[6]]           => 19
[[1,4,5,6,8],[2,7],[3]]           => 6
[[1,3,5,6,8],[2,7],[4]]           => 0
[[1,2,5,6,8],[3,7],[4]]           => 17
[[1,3,4,6,8],[2,7],[5]]           => 0
[[1,2,4,6,8],[3,7],[5]]           => 12
[[1,2,3,6,8],[4,7],[5]]           => 26
[[1,3,4,5,8],[2,7],[6]]           => 0
[[1,2,4,5,8],[3,7],[6]]           => 12
[[1,2,3,5,8],[4,7],[6]]           => 22
[[1,2,3,4,8],[5,7],[6]]           => 31
[[1,3,5,6,8],[2,4],[7]]           => 0
[[1,2,5,6,8],[3,4],[7]]           => 8
[[1,3,4,6,8],[2,5],[7]]           => 0
[[1,2,4,6,8],[3,5],[7]]           => 12
[[1,2,3,6,8],[4,5],[7]]           => 19
[[1,3,4,5,8],[2,6],[7]]           => 0
[[1,2,4,5,8],[3,6],[7]]           => 12
[[1,2,3,5,8],[4,6],[7]]           => 22
[[1,2,3,4,8],[5,6],[7]]           => 28
[[1,4,5,6,7],[2,8],[3]]           => 6
[[1,3,5,6,7],[2,8],[4]]           => 0
[[1,2,5,6,7],[3,8],[4]]           => 17
[[1,3,4,6,7],[2,8],[5]]           => 0
[[1,2,4,6,7],[3,8],[5]]           => 12
[[1,2,3,6,7],[4,8],[5]]           => 26
[[1,3,4,5,7],[2,8],[6]]           => 0
[[1,2,4,5,7],[3,8],[6]]           => 12
[[1,2,3,5,7],[4,8],[6]]           => 22
[[1,2,3,4,7],[5,8],[6]]           => 33
[[1,3,4,5,6],[2,8],[7]]           => 0
[[1,2,4,5,6],[3,8],[7]]           => 12
[[1,2,3,5,6],[4,8],[7]]           => 22
[[1,2,3,4,6],[5,8],[7]]           => 30
[[1,2,3,4,5],[6,8],[7]]           => 37
[[1,3,5,6,7],[2,4],[8]]           => 0
[[1,2,5,6,7],[3,4],[8]]           => 8
[[1,3,4,6,7],[2,5],[8]]           => 0
[[1,2,4,6,7],[3,5],[8]]           => 12
[[1,2,3,6,7],[4,5],[8]]           => 19
[[1,3,4,5,7],[2,6],[8]]           => 0
[[1,2,4,5,7],[3,6],[8]]           => 12
[[1,2,3,5,7],[4,6],[8]]           => 22
[[1,2,3,4,7],[5,6],[8]]           => 28
[[1,3,4,5,6],[2,7],[8]]           => 0
[[1,2,4,5,6],[3,7],[8]]           => 12
[[1,2,3,5,6],[4,7],[8]]           => 22
[[1,2,3,4,6],[5,7],[8]]           => 30
[[1,2,3,4,5],[6,7],[8]]           => 35
[[1,5,6,7,8],[2],[3],[4]]         => 0
[[1,4,6,7,8],[2],[3],[5]]         => 5
[[1,3,6,7,8],[2],[4],[5]]         => 0
[[1,2,6,7,8],[3],[4],[5]]         => 12
[[1,4,5,7,8],[2],[3],[6]]         => 5
[[1,3,5,7,8],[2],[4],[6]]         => 0
[[1,2,5,7,8],[3],[4],[6]]         => 16
[[1,3,4,7,8],[2],[5],[6]]         => 0
[[1,2,4,7,8],[3],[5],[6]]         => 12
[[1,2,3,7,8],[4],[5],[6]]         => 22
[[1,4,5,6,8],[2],[3],[7]]         => 5
[[1,3,5,6,8],[2],[4],[7]]         => 0
[[1,2,5,6,8],[3],[4],[7]]         => 16
[[1,3,4,6,8],[2],[5],[7]]         => 0
[[1,2,4,6,8],[3],[5],[7]]         => 12
[[1,2,3,6,8],[4],[5],[7]]         => 25
[[1,3,4,5,8],[2],[6],[7]]         => 0
[[1,2,4,5,8],[3],[6],[7]]         => 12
[[1,2,3,5,8],[4],[6],[7]]         => 22
[[1,2,3,4,8],[5],[6],[7]]         => 30
[[1,4,5,6,7],[2],[3],[8]]         => 5
[[1,3,5,6,7],[2],[4],[8]]         => 0
[[1,2,5,6,7],[3],[4],[8]]         => 16
[[1,3,4,6,7],[2],[5],[8]]         => 0
[[1,2,4,6,7],[3],[5],[8]]         => 12
[[1,2,3,6,7],[4],[5],[8]]         => 25
[[1,3,4,5,7],[2],[6],[8]]         => 0
[[1,2,4,5,7],[3],[6],[8]]         => 12
[[1,2,3,5,7],[4],[6],[8]]         => 22
[[1,2,3,4,7],[5],[6],[8]]         => 32
[[1,3,4,5,6],[2],[7],[8]]         => 0
[[1,2,4,5,6],[3],[7],[8]]         => 12
[[1,2,3,5,6],[4],[7],[8]]         => 22
[[1,2,3,4,6],[5],[7],[8]]         => 30
[[1,2,3,4,5],[6],[7],[8]]         => 36
[[1,3,5,7],[2,4,6,8]]             => 0
[[1,2,5,7],[3,4,6,8]]             => 10
[[1,3,4,7],[2,5,6,8]]             => 0
[[1,2,4,7],[3,5,6,8]]             => 10
[[1,2,3,7],[4,5,6,8]]             => 18
[[1,3,5,6],[2,4,7,8]]             => 0
[[1,2,5,6],[3,4,7,8]]             => 10
[[1,3,4,6],[2,5,7,8]]             => 0
[[1,2,4,6],[3,5,7,8]]             => 10
[[1,2,3,6],[4,5,7,8]]             => 18
[[1,3,4,5],[2,6,7,8]]             => 0
[[1,2,4,5],[3,6,7,8]]             => 10
[[1,2,3,5],[4,6,7,8]]             => 18
[[1,2,3,4],[5,6,7,8]]             => 24
[[1,4,6,8],[2,5,7],[3]]           => 6
[[1,3,6,8],[2,5,7],[4]]           => 0
[[1,2,6,8],[3,5,7],[4]]           => 14
[[1,3,6,8],[2,4,7],[5]]           => 0
[[1,2,6,8],[3,4,7],[5]]           => 9
[[1,4,5,8],[2,6,7],[3]]           => 6
[[1,3,5,8],[2,6,7],[4]]           => 0
[[1,2,5,8],[3,6,7],[4]]           => 14
[[1,3,4,8],[2,6,7],[5]]           => 0
[[1,2,4,8],[3,6,7],[5]]           => 9
[[1,2,3,8],[4,6,7],[5]]           => 20
[[1,3,5,8],[2,4,7],[6]]           => 0
[[1,2,5,8],[3,4,7],[6]]           => 9
[[1,3,4,8],[2,5,7],[6]]           => 0
[[1,2,4,8],[3,5,7],[6]]           => 9
[[1,2,3,8],[4,5,7],[6]]           => 16
[[1,3,5,8],[2,4,6],[7]]           => 0
[[1,2,5,8],[3,4,6],[7]]           => 9
[[1,3,4,8],[2,5,6],[7]]           => 0
[[1,2,4,8],[3,5,6],[7]]           => 9
[[1,2,3,8],[4,5,6],[7]]           => 16
[[1,4,6,7],[2,5,8],[3]]           => 6
[[1,3,6,7],[2,5,8],[4]]           => 0
[[1,2,6,7],[3,5,8],[4]]           => 14
[[1,3,6,7],[2,4,8],[5]]           => 0
[[1,2,6,7],[3,4,8],[5]]           => 9
[[1,4,5,7],[2,6,8],[3]]           => 6
[[1,3,5,7],[2,6,8],[4]]           => 0
[[1,2,5,7],[3,6,8],[4]]           => 16
[[1,3,4,7],[2,6,8],[5]]           => 0
[[1,2,4,7],[3,6,8],[5]]           => 11
[[1,2,3,7],[4,6,8],[5]]           => 23
[[1,3,5,7],[2,4,8],[6]]           => 0
[[1,2,5,7],[3,4,8],[6]]           => 9
[[1,3,4,7],[2,5,8],[6]]           => 0
[[1,2,4,7],[3,5,8],[6]]           => 11
[[1,2,3,7],[4,5,8],[6]]           => 19
[[1,4,5,6],[2,7,8],[3]]           => 6
[[1,3,5,6],[2,7,8],[4]]           => 0
[[1,2,5,6],[3,7,8],[4]]           => 16
[[1,3,4,6],[2,7,8],[5]]           => 0
[[1,2,4,6],[3,7,8],[5]]           => 11
[[1,2,3,6],[4,7,8],[5]]           => 23
[[1,3,4,5],[2,7,8],[6]]           => 0
[[1,2,4,5],[3,7,8],[6]]           => 11
[[1,2,3,5],[4,7,8],[6]]           => 19
[[1,2,3,4],[5,7,8],[6]]           => 28
[[1,3,5,6],[2,4,8],[7]]           => 0
[[1,2,5,6],[3,4,8],[7]]           => 9
[[1,3,4,6],[2,5,8],[7]]           => 0
[[1,2,4,6],[3,5,8],[7]]           => 11
[[1,2,3,6],[4,5,8],[7]]           => 19
[[1,3,4,5],[2,6,8],[7]]           => 0
[[1,2,4,5],[3,6,8],[7]]           => 11
[[1,2,3,5],[4,6,8],[7]]           => 19
[[1,2,3,4],[5,6,8],[7]]           => 25
[[1,3,5,7],[2,4,6],[8]]           => 0
[[1,2,5,7],[3,4,6],[8]]           => 9
[[1,3,4,7],[2,5,6],[8]]           => 0
[[1,2,4,7],[3,5,6],[8]]           => 9
[[1,2,3,7],[4,5,6],[8]]           => 16
[[1,3,5,6],[2,4,7],[8]]           => 0
[[1,2,5,6],[3,4,7],[8]]           => 9
[[1,3,4,6],[2,5,7],[8]]           => 0
[[1,2,4,6],[3,5,7],[8]]           => 11
[[1,2,3,6],[4,5,7],[8]]           => 19
[[1,3,4,5],[2,6,7],[8]]           => 0
[[1,2,4,5],[3,6,7],[8]]           => 11
[[1,2,3,5],[4,6,7],[8]]           => 19
[[1,2,3,4],[5,6,7],[8]]           => 25
[[1,4,7,8],[2,5],[3,6]]           => 7
[[1,3,7,8],[2,5],[4,6]]           => 0
[[1,2,7,8],[3,5],[4,6]]           => 12
[[1,3,7,8],[2,4],[5,6]]           => 0
[[1,2,7,8],[3,4],[5,6]]           => 7
[[1,4,6,8],[2,5],[3,7]]           => 7
[[1,3,6,8],[2,5],[4,7]]           => 0
[[1,2,6,8],[3,5],[4,7]]           => 12
[[1,3,6,8],[2,4],[5,7]]           => 0
[[1,2,6,8],[3,4],[5,7]]           => 7
[[1,4,5,8],[2,6],[3,7]]           => 7
[[1,3,5,8],[2,6],[4,7]]           => 0
[[1,2,5,8],[3,6],[4,7]]           => 17
[[1,3,4,8],[2,6],[5,7]]           => 0
[[1,2,4,8],[3,6],[5,7]]           => 11
[[1,2,3,8],[4,6],[5,7]]           => 21
[[1,3,5,8],[2,4],[6,7]]           => 0
[[1,2,5,8],[3,4],[6,7]]           => 7
[[1,3,4,8],[2,5],[6,7]]           => 0
[[1,2,4,8],[3,5],[6,7]]           => 11
[[1,2,3,8],[4,5],[6,7]]           => 17
[[1,4,6,7],[2,5],[3,8]]           => 7
[[1,3,6,7],[2,5],[4,8]]           => 0
[[1,2,6,7],[3,5],[4,8]]           => 12
[[1,3,6,7],[2,4],[5,8]]           => 0
[[1,2,6,7],[3,4],[5,8]]           => 7
[[1,4,5,7],[2,6],[3,8]]           => 7
[[1,3,5,7],[2,6],[4,8]]           => 0
[[1,2,5,7],[3,6],[4,8]]           => 17
[[1,3,4,7],[2,6],[5,8]]           => 0
[[1,2,4,7],[3,6],[5,8]]           => 11
[[1,2,3,7],[4,6],[5,8]]           => 21
[[1,3,5,7],[2,4],[6,8]]           => 0
[[1,2,5,7],[3,4],[6,8]]           => 7
[[1,3,4,7],[2,5],[6,8]]           => 0
[[1,2,4,7],[3,5],[6,8]]           => 11
[[1,2,3,7],[4,5],[6,8]]           => 17
[[1,4,5,6],[2,7],[3,8]]           => 7
[[1,3,5,6],[2,7],[4,8]]           => 0
[[1,2,5,6],[3,7],[4,8]]           => 17
[[1,3,4,6],[2,7],[5,8]]           => 0
[[1,2,4,6],[3,7],[5,8]]           => 11
[[1,2,3,6],[4,7],[5,8]]           => 25
[[1,3,4,5],[2,7],[6,8]]           => 0
[[1,2,4,5],[3,7],[6,8]]           => 11
[[1,2,3,5],[4,7],[6,8]]           => 20
[[1,2,3,4],[5,7],[6,8]]           => 28
[[1,3,5,6],[2,4],[7,8]]           => 0
[[1,2,5,6],[3,4],[7,8]]           => 7
[[1,3,4,6],[2,5],[7,8]]           => 0
[[1,2,4,6],[3,5],[7,8]]           => 11
[[1,2,3,6],[4,5],[7,8]]           => 17
[[1,3,4,5],[2,6],[7,8]]           => 0
[[1,2,4,5],[3,6],[7,8]]           => 11
[[1,2,3,5],[4,6],[7,8]]           => 20
[[1,2,3,4],[5,6],[7,8]]           => 25
[[1,5,7,8],[2,6],[3],[4]]         => 0
[[1,4,7,8],[2,6],[3],[5]]         => 5
[[1,3,7,8],[2,6],[4],[5]]         => 0
[[1,2,7,8],[3,6],[4],[5]]         => 8
[[1,4,7,8],[2,5],[3],[6]]         => 5
[[1,3,7,8],[2,5],[4],[6]]         => 0
[[1,2,7,8],[3,5],[4],[6]]         => 12
[[1,3,7,8],[2,4],[5],[6]]         => 0
[[1,2,7,8],[3,4],[5],[6]]         => 8
[[1,5,6,8],[2,7],[3],[4]]         => 0
[[1,4,6,8],[2,7],[3],[5]]         => 5
[[1,3,6,8],[2,7],[4],[5]]         => 0
[[1,2,6,8],[3,7],[4],[5]]         => 11
[[1,4,5,8],[2,7],[3],[6]]         => 5
[[1,3,5,8],[2,7],[4],[6]]         => 0
[[1,2,5,8],[3,7],[4],[6]]         => 15
[[1,3,4,8],[2,7],[5],[6]]         => 0
[[1,2,4,8],[3,7],[5],[6]]         => 11
[[1,2,3,8],[4,7],[5],[6]]         => 18
[[1,4,6,8],[2,5],[3],[7]]         => 5
[[1,3,6,8],[2,5],[4],[7]]         => 0
[[1,2,6,8],[3,5],[4],[7]]         => 12
[[1,3,6,8],[2,4],[5],[7]]         => 0
[[1,2,6,8],[3,4],[5],[7]]         => 8
[[1,4,5,8],[2,6],[3],[7]]         => 5
[[1,3,5,8],[2,6],[4],[7]]         => 0
[[1,2,5,8],[3,6],[4],[7]]         => 15
[[1,3,4,8],[2,6],[5],[7]]         => 0
[[1,2,4,8],[3,6],[5],[7]]         => 11
[[1,2,3,8],[4,6],[5],[7]]         => 21
[[1,3,5,8],[2,4],[6],[7]]         => 0
[[1,2,5,8],[3,4],[6],[7]]         => 8
[[1,3,4,8],[2,5],[6],[7]]         => 0
[[1,2,4,8],[3,5],[6],[7]]         => 11
[[1,2,3,8],[4,5],[6],[7]]         => 18
[[1,5,6,7],[2,8],[3],[4]]         => 0
[[1,4,6,7],[2,8],[3],[5]]         => 5
[[1,3,6,7],[2,8],[4],[5]]         => 0
[[1,2,6,7],[3,8],[4],[5]]         => 11
[[1,4,5,7],[2,8],[3],[6]]         => 5
[[1,3,5,7],[2,8],[4],[6]]         => 0
[[1,2,5,7],[3,8],[4],[6]]         => 15
[[1,3,4,7],[2,8],[5],[6]]         => 0
[[1,2,4,7],[3,8],[5],[6]]         => 11
[[1,2,3,7],[4,8],[5],[6]]         => 20
[[1,4,5,6],[2,8],[3],[7]]         => 5
[[1,3,5,6],[2,8],[4],[7]]         => 0
[[1,2,5,6],[3,8],[4],[7]]         => 15
[[1,3,4,6],[2,8],[5],[7]]         => 0
[[1,2,4,6],[3,8],[5],[7]]         => 11
[[1,2,3,6],[4,8],[5],[7]]         => 23
[[1,3,4,5],[2,8],[6],[7]]         => 0
[[1,2,4,5],[3,8],[6],[7]]         => 11
[[1,2,3,5],[4,8],[6],[7]]         => 20
[[1,2,3,4],[5,8],[6],[7]]         => 26
[[1,4,6,7],[2,5],[3],[8]]         => 5
[[1,3,6,7],[2,5],[4],[8]]         => 0
[[1,2,6,7],[3,5],[4],[8]]         => 12
[[1,3,6,7],[2,4],[5],[8]]         => 0
[[1,2,6,7],[3,4],[5],[8]]         => 8
[[1,4,5,7],[2,6],[3],[8]]         => 5
[[1,3,5,7],[2,6],[4],[8]]         => 0
[[1,2,5,7],[3,6],[4],[8]]         => 15
[[1,3,4,7],[2,6],[5],[8]]         => 0
[[1,2,4,7],[3,6],[5],[8]]         => 11
[[1,2,3,7],[4,6],[5],[8]]         => 21
[[1,3,5,7],[2,4],[6],[8]]         => 0
[[1,2,5,7],[3,4],[6],[8]]         => 8
[[1,3,4,7],[2,5],[6],[8]]         => 0
[[1,2,4,7],[3,5],[6],[8]]         => 11
[[1,2,3,7],[4,5],[6],[8]]         => 18
[[1,4,5,6],[2,7],[3],[8]]         => 5
[[1,3,5,6],[2,7],[4],[8]]         => 0
[[1,2,5,6],[3,7],[4],[8]]         => 15
[[1,3,4,6],[2,7],[5],[8]]         => 0
[[1,2,4,6],[3,7],[5],[8]]         => 11
[[1,2,3,6],[4,7],[5],[8]]         => 23
[[1,3,4,5],[2,7],[6],[8]]         => 0
[[1,2,4,5],[3,7],[6],[8]]         => 11
[[1,2,3,5],[4,7],[6],[8]]         => 20
[[1,2,3,4],[5,7],[6],[8]]         => 28
[[1,3,5,6],[2,4],[7],[8]]         => 0
[[1,2,5,6],[3,4],[7],[8]]         => 8
[[1,3,4,6],[2,5],[7],[8]]         => 0
[[1,2,4,6],[3,5],[7],[8]]         => 11
[[1,2,3,6],[4,5],[7],[8]]         => 18
[[1,3,4,5],[2,6],[7],[8]]         => 0
[[1,2,4,5],[3,6],[7],[8]]         => 11
[[1,2,3,5],[4,6],[7],[8]]         => 20
[[1,2,3,4],[5,6],[7],[8]]         => 26
[[1,6,7,8],[2],[3],[4],[5]]       => 4
[[1,5,7,8],[2],[3],[4],[6]]       => 0
[[1,4,7,8],[2],[3],[5],[6]]       => 4
[[1,3,7,8],[2],[4],[5],[6]]       => 0
[[1,2,7,8],[3],[4],[5],[6]]       => 14
[[1,5,6,8],[2],[3],[4],[7]]       => 0
[[1,4,6,8],[2],[3],[5],[7]]       => 4
[[1,3,6,8],[2],[4],[5],[7]]       => 0
[[1,2,6,8],[3],[4],[5],[7]]       => 11
[[1,4,5,8],[2],[3],[6],[7]]       => 4
[[1,3,5,8],[2],[4],[6],[7]]       => 0
[[1,2,5,8],[3],[4],[6],[7]]       => 14
[[1,3,4,8],[2],[5],[6],[7]]       => 0
[[1,2,4,8],[3],[5],[6],[7]]       => 11
[[1,2,3,8],[4],[5],[6],[7]]       => 22
[[1,5,6,7],[2],[3],[4],[8]]       => 0
[[1,4,6,7],[2],[3],[5],[8]]       => 4
[[1,3,6,7],[2],[4],[5],[8]]       => 0
[[1,2,6,7],[3],[4],[5],[8]]       => 11
[[1,4,5,7],[2],[3],[6],[8]]       => 4
[[1,3,5,7],[2],[4],[6],[8]]       => 0
[[1,2,5,7],[3],[4],[6],[8]]       => 14
[[1,3,4,7],[2],[5],[6],[8]]       => 0
[[1,2,4,7],[3],[5],[6],[8]]       => 11
[[1,2,3,7],[4],[5],[6],[8]]       => 20
[[1,4,5,6],[2],[3],[7],[8]]       => 4
[[1,3,5,6],[2],[4],[7],[8]]       => 0
[[1,2,5,6],[3],[4],[7],[8]]       => 14
[[1,3,4,6],[2],[5],[7],[8]]       => 0
[[1,2,4,6],[3],[5],[7],[8]]       => 11
[[1,2,3,6],[4],[5],[7],[8]]       => 22
[[1,3,4,5],[2],[6],[7],[8]]       => 0
[[1,2,4,5],[3],[6],[7],[8]]       => 11
[[1,2,3,5],[4],[6],[7],[8]]       => 20
[[1,2,3,4],[5],[6],[7],[8]]       => 28
[[1,4,7],[2,5,8],[3,6]]           => 7
[[1,3,7],[2,5,8],[4,6]]           => 0
[[1,2,7],[3,5,8],[4,6]]           => 12
[[1,3,7],[2,4,8],[5,6]]           => 0
[[1,2,7],[3,4,8],[5,6]]           => 7
[[1,4,6],[2,5,8],[3,7]]           => 7
[[1,3,6],[2,5,8],[4,7]]           => 0
[[1,2,6],[3,5,8],[4,7]]           => 12
[[1,3,6],[2,4,8],[5,7]]           => 0
[[1,2,6],[3,4,8],[5,7]]           => 7
[[1,4,5],[2,6,8],[3,7]]           => 7
[[1,3,5],[2,6,8],[4,7]]           => 0
[[1,2,5],[3,6,8],[4,7]]           => 15
[[1,3,4],[2,6,8],[5,7]]           => 0
[[1,2,4],[3,6,8],[5,7]]           => 9
[[1,2,3],[4,6,8],[5,7]]           => 19
[[1,3,5],[2,4,8],[6,7]]           => 0
[[1,2,5],[3,4,8],[6,7]]           => 7
[[1,3,4],[2,5,8],[6,7]]           => 0
[[1,2,4],[3,5,8],[6,7]]           => 9
[[1,2,3],[4,5,8],[6,7]]           => 15
[[1,4,6],[2,5,7],[3,8]]           => 7
[[1,3,6],[2,5,7],[4,8]]           => 0
[[1,2,6],[3,5,7],[4,8]]           => 15
[[1,3,6],[2,4,7],[5,8]]           => 0
[[1,2,6],[3,4,7],[5,8]]           => 9
[[1,4,5],[2,6,7],[3,8]]           => 7
[[1,3,5],[2,6,7],[4,8]]           => 0
[[1,2,5],[3,6,7],[4,8]]           => 15
[[1,3,4],[2,6,7],[5,8]]           => 0
[[1,2,4],[3,6,7],[5,8]]           => 9
[[1,2,3],[4,6,7],[5,8]]           => 19
[[1,3,5],[2,4,7],[6,8]]           => 0
[[1,2,5],[3,4,7],[6,8]]           => 9
[[1,3,4],[2,5,7],[6,8]]           => 0
[[1,2,4],[3,5,7],[6,8]]           => 9
[[1,2,3],[4,5,7],[6,8]]           => 15
[[1,3,5],[2,4,6],[7,8]]           => 0
[[1,2,5],[3,4,6],[7,8]]           => 9
[[1,3,4],[2,5,6],[7,8]]           => 0
[[1,2,4],[3,5,6],[7,8]]           => 9
[[1,2,3],[4,5,6],[7,8]]           => 15
[[1,5,7],[2,6,8],[3],[4]]         => 0
[[1,4,7],[2,6,8],[3],[5]]         => 5
[[1,3,7],[2,6,8],[4],[5]]         => 0
[[1,2,7],[3,6,8],[4],[5]]         => 9
[[1,4,7],[2,5,8],[3],[6]]         => 5
[[1,3,7],[2,5,8],[4],[6]]         => 0
[[1,2,7],[3,5,8],[4],[6]]         => 13
[[1,3,7],[2,4,8],[5],[6]]         => 0
[[1,2,7],[3,4,8],[5],[6]]         => 9
[[1,5,6],[2,7,8],[3],[4]]         => 0
[[1,4,6],[2,7,8],[3],[5]]         => 5
[[1,3,6],[2,7,8],[4],[5]]         => 0
[[1,2,6],[3,7,8],[4],[5]]         => 9
[[1,4,5],[2,7,8],[3],[6]]         => 5
[[1,3,5],[2,7,8],[4],[6]]         => 0
[[1,2,5],[3,7,8],[4],[6]]         => 13
[[1,3,4],[2,7,8],[5],[6]]         => 0
[[1,2,4],[3,7,8],[5],[6]]         => 9
[[1,2,3],[4,7,8],[5],[6]]         => 16
[[1,4,6],[2,5,8],[3],[7]]         => 5
[[1,3,6],[2,5,8],[4],[7]]         => 0
[[1,2,6],[3,5,8],[4],[7]]         => 13
[[1,3,6],[2,4,8],[5],[7]]         => 0
[[1,2,6],[3,4,8],[5],[7]]         => 9
[[1,4,5],[2,6,8],[3],[7]]         => 5
[[1,3,5],[2,6,8],[4],[7]]         => 0
[[1,2,5],[3,6,8],[4],[7]]         => 13
[[1,3,4],[2,6,8],[5],[7]]         => 0
[[1,2,4],[3,6,8],[5],[7]]         => 9
[[1,2,3],[4,6,8],[5],[7]]         => 19
[[1,3,5],[2,4,8],[6],[7]]         => 0
[[1,2,5],[3,4,8],[6],[7]]         => 9
[[1,3,4],[2,5,8],[6],[7]]         => 0
[[1,2,4],[3,5,8],[6],[7]]         => 9
[[1,2,3],[4,5,8],[6],[7]]         => 16
[[1,4,6],[2,5,7],[3],[8]]         => 5
[[1,3,6],[2,5,7],[4],[8]]         => 0
[[1,2,6],[3,5,7],[4],[8]]         => 13
[[1,3,6],[2,4,7],[5],[8]]         => 0
[[1,2,6],[3,4,7],[5],[8]]         => 9
[[1,4,5],[2,6,7],[3],[8]]         => 5
[[1,3,5],[2,6,7],[4],[8]]         => 0
[[1,2,5],[3,6,7],[4],[8]]         => 13
[[1,3,4],[2,6,7],[5],[8]]         => 0
[[1,2,4],[3,6,7],[5],[8]]         => 9
[[1,2,3],[4,6,7],[5],[8]]         => 19
[[1,3,5],[2,4,7],[6],[8]]         => 0
[[1,2,5],[3,4,7],[6],[8]]         => 9
[[1,3,4],[2,5,7],[6],[8]]         => 0
[[1,2,4],[3,5,7],[6],[8]]         => 9
[[1,2,3],[4,5,7],[6],[8]]         => 16
[[1,3,5],[2,4,6],[7],[8]]         => 0
[[1,2,5],[3,4,6],[7],[8]]         => 9
[[1,3,4],[2,5,6],[7],[8]]         => 0
[[1,2,4],[3,5,6],[7],[8]]         => 9
[[1,2,3],[4,5,6],[7],[8]]         => 16
[[1,5,8],[2,6],[3,7],[4]]         => 0
[[1,4,8],[2,6],[3,7],[5]]         => 5
[[1,3,8],[2,6],[4,7],[5]]         => 0
[[1,2,8],[3,6],[4,7],[5]]         => 7
[[1,4,8],[2,5],[3,7],[6]]         => 5
[[1,3,8],[2,5],[4,7],[6]]         => 0
[[1,2,8],[3,5],[4,7],[6]]         => 11
[[1,3,8],[2,4],[5,7],[6]]         => 0
[[1,2,8],[3,4],[5,7],[6]]         => 7
[[1,4,8],[2,5],[3,6],[7]]         => 7
[[1,3,8],[2,5],[4,6],[7]]         => 0
[[1,2,8],[3,5],[4,6],[7]]         => 11
[[1,3,8],[2,4],[5,6],[7]]         => 0
[[1,2,8],[3,4],[5,6],[7]]         => 7
[[1,5,7],[2,6],[3,8],[4]]         => 0
[[1,4,7],[2,6],[3,8],[5]]         => 5
[[1,3,7],[2,6],[4,8],[5]]         => 0
[[1,2,7],[3,6],[4,8],[5]]         => 7
[[1,4,7],[2,5],[3,8],[6]]         => 5
[[1,3,7],[2,5],[4,8],[6]]         => 0
[[1,2,7],[3,5],[4,8],[6]]         => 11
[[1,3,7],[2,4],[5,8],[6]]         => 0
[[1,2,7],[3,4],[5,8],[6]]         => 7
[[1,5,6],[2,7],[3,8],[4]]         => 0
[[1,4,6],[2,7],[3,8],[5]]         => 5
[[1,3,6],[2,7],[4,8],[5]]         => 0
[[1,2,6],[3,7],[4,8],[5]]         => 10
[[1,4,5],[2,7],[3,8],[6]]         => 5
[[1,3,5],[2,7],[4,8],[6]]         => 0
[[1,2,5],[3,7],[4,8],[6]]         => 14
[[1,3,4],[2,7],[5,8],[6]]         => 0
[[1,2,4],[3,7],[5,8],[6]]         => 10
[[1,2,3],[4,7],[5,8],[6]]         => 16
[[1,4,6],[2,5],[3,8],[7]]         => 5
[[1,3,6],[2,5],[4,8],[7]]         => 0
[[1,2,6],[3,5],[4,8],[7]]         => 11
[[1,3,6],[2,4],[5,8],[7]]         => 0
[[1,2,6],[3,4],[5,8],[7]]         => 7
[[1,4,5],[2,6],[3,8],[7]]         => 5
[[1,3,5],[2,6],[4,8],[7]]         => 0
[[1,2,5],[3,6],[4,8],[7]]         => 14
[[1,3,4],[2,6],[5,8],[7]]         => 0
[[1,2,4],[3,6],[5,8],[7]]         => 10
[[1,2,3],[4,6],[5,8],[7]]         => 19
[[1,3,5],[2,4],[6,8],[7]]         => 0
[[1,2,5],[3,4],[6,8],[7]]         => 7
[[1,3,4],[2,5],[6,8],[7]]         => 0
[[1,2,4],[3,5],[6,8],[7]]         => 10
[[1,2,3],[4,5],[6,8],[7]]         => 16
[[1,4,7],[2,5],[3,6],[8]]         => 7
[[1,3,7],[2,5],[4,6],[8]]         => 0
[[1,2,7],[3,5],[4,6],[8]]         => 11
[[1,3,7],[2,4],[5,6],[8]]         => 0
[[1,2,7],[3,4],[5,6],[8]]         => 7
[[1,4,6],[2,5],[3,7],[8]]         => 7
[[1,3,6],[2,5],[4,7],[8]]         => 0
[[1,2,6],[3,5],[4,7],[8]]         => 11
[[1,3,6],[2,4],[5,7],[8]]         => 0
[[1,2,6],[3,4],[5,7],[8]]         => 7
[[1,4,5],[2,6],[3,7],[8]]         => 7
[[1,3,5],[2,6],[4,7],[8]]         => 0
[[1,2,5],[3,6],[4,7],[8]]         => 16
[[1,3,4],[2,6],[5,7],[8]]         => 0
[[1,2,4],[3,6],[5,7],[8]]         => 10
[[1,2,3],[4,6],[5,7],[8]]         => 19
[[1,3,5],[2,4],[6,7],[8]]         => 0
[[1,2,5],[3,4],[6,7],[8]]         => 7
[[1,3,4],[2,5],[6,7],[8]]         => 0
[[1,2,4],[3,5],[6,7],[8]]         => 10
[[1,2,3],[4,5],[6,7],[8]]         => 16
[[1,6,8],[2,7],[3],[4],[5]]       => 4
[[1,5,8],[2,7],[3],[4],[6]]       => 0
[[1,4,8],[2,7],[3],[5],[6]]       => 4
[[1,3,8],[2,7],[4],[5],[6]]       => 0
[[1,2,8],[3,7],[4],[5],[6]]       => 11
[[1,5,8],[2,6],[3],[4],[7]]       => 0
[[1,4,8],[2,6],[3],[5],[7]]       => 4
[[1,3,8],[2,6],[4],[5],[7]]       => 0
[[1,2,8],[3,6],[4],[5],[7]]       => 8
[[1,4,8],[2,5],[3],[6],[7]]       => 4
[[1,3,8],[2,5],[4],[6],[7]]       => 0
[[1,2,8],[3,5],[4],[6],[7]]       => 11
[[1,3,8],[2,4],[5],[6],[7]]       => 0
[[1,2,8],[3,4],[5],[6],[7]]       => 8
[[1,6,7],[2,8],[3],[4],[5]]       => 4
[[1,5,7],[2,8],[3],[4],[6]]       => 0
[[1,4,7],[2,8],[3],[5],[6]]       => 4
[[1,3,7],[2,8],[4],[5],[6]]       => 0
[[1,2,7],[3,8],[4],[5],[6]]       => 13
[[1,5,6],[2,8],[3],[4],[7]]       => 0
[[1,4,6],[2,8],[3],[5],[7]]       => 4
[[1,3,6],[2,8],[4],[5],[7]]       => 0
[[1,2,6],[3,8],[4],[5],[7]]       => 10
[[1,4,5],[2,8],[3],[6],[7]]       => 4
[[1,3,5],[2,8],[4],[6],[7]]       => 0
[[1,2,5],[3,8],[4],[6],[7]]       => 13
[[1,3,4],[2,8],[5],[6],[7]]       => 0
[[1,2,4],[3,8],[5],[6],[7]]       => 10
[[1,2,3],[4,8],[5],[6],[7]]       => 19
[[1,5,7],[2,6],[3],[4],[8]]       => 0
[[1,4,7],[2,6],[3],[5],[8]]       => 4
[[1,3,7],[2,6],[4],[5],[8]]       => 0
[[1,2,7],[3,6],[4],[5],[8]]       => 8
[[1,4,7],[2,5],[3],[6],[8]]       => 4
[[1,3,7],[2,5],[4],[6],[8]]       => 0
[[1,2,7],[3,5],[4],[6],[8]]       => 11
[[1,3,7],[2,4],[5],[6],[8]]       => 0
[[1,2,7],[3,4],[5],[6],[8]]       => 8
[[1,5,6],[2,7],[3],[4],[8]]       => 0
[[1,4,6],[2,7],[3],[5],[8]]       => 4
[[1,3,6],[2,7],[4],[5],[8]]       => 0
[[1,2,6],[3,7],[4],[5],[8]]       => 10
[[1,4,5],[2,7],[3],[6],[8]]       => 4
[[1,3,5],[2,7],[4],[6],[8]]       => 0
[[1,2,5],[3,7],[4],[6],[8]]       => 13
[[1,3,4],[2,7],[5],[6],[8]]       => 0
[[1,2,4],[3,7],[5],[6],[8]]       => 10
[[1,2,3],[4,7],[5],[6],[8]]       => 17
[[1,4,6],[2,5],[3],[7],[8]]       => 4
[[1,3,6],[2,5],[4],[7],[8]]       => 0
[[1,2,6],[3,5],[4],[7],[8]]       => 11
[[1,3,6],[2,4],[5],[7],[8]]       => 0
[[1,2,6],[3,4],[5],[7],[8]]       => 8
[[1,4,5],[2,6],[3],[7],[8]]       => 4
[[1,3,5],[2,6],[4],[7],[8]]       => 0
[[1,2,5],[3,6],[4],[7],[8]]       => 13
[[1,3,4],[2,6],[5],[7],[8]]       => 0
[[1,2,4],[3,6],[5],[7],[8]]       => 10
[[1,2,3],[4,6],[5],[7],[8]]       => 19
[[1,3,5],[2,4],[6],[7],[8]]       => 0
[[1,2,5],[3,4],[6],[7],[8]]       => 8
[[1,3,4],[2,5],[6],[7],[8]]       => 0
[[1,2,4],[3,5],[6],[7],[8]]       => 10
[[1,2,3],[4,5],[6],[7],[8]]       => 17
[[1,7,8],[2],[3],[4],[5],[6]]     => 0
[[1,6,8],[2],[3],[4],[5],[7]]     => 3
[[1,5,8],[2],[3],[4],[6],[7]]     => 0
[[1,4,8],[2],[3],[5],[6],[7]]     => 3
[[1,3,8],[2],[4],[5],[6],[7]]     => 0
[[1,2,8],[3],[4],[5],[6],[7]]     => 10
[[1,6,7],[2],[3],[4],[5],[8]]     => 3
[[1,5,7],[2],[3],[4],[6],[8]]     => 0
[[1,4,7],[2],[3],[5],[6],[8]]     => 3
[[1,3,7],[2],[4],[5],[6],[8]]     => 0
[[1,2,7],[3],[4],[5],[6],[8]]     => 12
[[1,5,6],[2],[3],[4],[7],[8]]     => 0
[[1,4,6],[2],[3],[5],[7],[8]]     => 3
[[1,3,6],[2],[4],[5],[7],[8]]     => 0
[[1,2,6],[3],[4],[5],[7],[8]]     => 10
[[1,4,5],[2],[3],[6],[7],[8]]     => 3
[[1,3,5],[2],[4],[6],[7],[8]]     => 0
[[1,2,5],[3],[4],[6],[7],[8]]     => 12
[[1,3,4],[2],[5],[6],[7],[8]]     => 0
[[1,2,4],[3],[5],[6],[7],[8]]     => 10
[[1,2,3],[4],[5],[6],[7],[8]]     => 18
[[1,5],[2,6],[3,7],[4,8]]         => 0
[[1,4],[2,6],[3,7],[5,8]]         => 6
[[1,3],[2,6],[4,7],[5,8]]         => 0
[[1,2],[3,6],[4,7],[5,8]]         => 6
[[1,4],[2,5],[3,7],[6,8]]         => 6
[[1,3],[2,5],[4,7],[6,8]]         => 0
[[1,2],[3,5],[4,7],[6,8]]         => 10
[[1,3],[2,4],[5,7],[6,8]]         => 0
[[1,2],[3,4],[5,7],[6,8]]         => 6
[[1,4],[2,5],[3,6],[7,8]]         => 6
[[1,3],[2,5],[4,6],[7,8]]         => 0
[[1,2],[3,5],[4,6],[7,8]]         => 10
[[1,3],[2,4],[5,6],[7,8]]         => 0
[[1,2],[3,4],[5,6],[7,8]]         => 6
[[1,6],[2,7],[3,8],[4],[5]]       => 4
[[1,5],[2,7],[3,8],[4],[6]]       => 0
[[1,4],[2,7],[3,8],[5],[6]]       => 4
[[1,3],[2,7],[4,8],[5],[6]]       => 0
[[1,2],[3,7],[4,8],[5],[6]]       => 10
[[1,5],[2,6],[3,8],[4],[7]]       => 0
[[1,4],[2,6],[3,8],[5],[7]]       => 4
[[1,3],[2,6],[4,8],[5],[7]]       => 0
[[1,2],[3,6],[4,8],[5],[7]]       => 7
[[1,4],[2,5],[3,8],[6],[7]]       => 4
[[1,3],[2,5],[4,8],[6],[7]]       => 0
[[1,2],[3,5],[4,8],[6],[7]]       => 10
[[1,3],[2,4],[5,8],[6],[7]]       => 0
[[1,2],[3,4],[5,8],[6],[7]]       => 7
[[1,5],[2,6],[3,7],[4],[8]]       => 0
[[1,4],[2,6],[3,7],[5],[8]]       => 4
[[1,3],[2,6],[4,7],[5],[8]]       => 0
[[1,2],[3,6],[4,7],[5],[8]]       => 7
[[1,4],[2,5],[3,7],[6],[8]]       => 4
[[1,3],[2,5],[4,7],[6],[8]]       => 0
[[1,2],[3,5],[4,7],[6],[8]]       => 10
[[1,3],[2,4],[5,7],[6],[8]]       => 0
[[1,2],[3,4],[5,7],[6],[8]]       => 7
[[1,4],[2,5],[3,6],[7],[8]]       => 7
[[1,3],[2,5],[4,6],[7],[8]]       => 0
[[1,2],[3,5],[4,6],[7],[8]]       => 10
[[1,3],[2,4],[5,6],[7],[8]]       => 0
[[1,2],[3,4],[5,6],[7],[8]]       => 7
[[1,7],[2,8],[3],[4],[5],[6]]     => 0
[[1,6],[2,8],[3],[4],[5],[7]]     => 3
[[1,5],[2,8],[3],[4],[6],[7]]     => 0
[[1,4],[2,8],[3],[5],[6],[7]]     => 3
[[1,3],[2,8],[4],[5],[6],[7]]     => 0
[[1,2],[3,8],[4],[5],[6],[7]]     => 8
[[1,6],[2,7],[3],[4],[5],[8]]     => 3
[[1,5],[2,7],[3],[4],[6],[8]]     => 0
[[1,4],[2,7],[3],[5],[6],[8]]     => 3
[[1,3],[2,7],[4],[5],[6],[8]]     => 0
[[1,2],[3,7],[4],[5],[6],[8]]     => 10
[[1,5],[2,6],[3],[4],[7],[8]]     => 0
[[1,4],[2,6],[3],[5],[7],[8]]     => 3
[[1,3],[2,6],[4],[5],[7],[8]]     => 0
[[1,2],[3,6],[4],[5],[7],[8]]     => 8
[[1,4],[2,5],[3],[6],[7],[8]]     => 3
[[1,3],[2,5],[4],[6],[7],[8]]     => 0
[[1,2],[3,5],[4],[6],[7],[8]]     => 10
[[1,3],[2,4],[5],[6],[7],[8]]     => 0
[[1,2],[3,4],[5],[6],[7],[8]]     => 8
[[1,8],[2],[3],[4],[5],[6],[7]]   => 2
[[1,7],[2],[3],[4],[5],[6],[8]]   => 0
[[1,6],[2],[3],[4],[5],[7],[8]]   => 2
[[1,5],[2],[3],[4],[6],[7],[8]]   => 0
[[1,4],[2],[3],[5],[6],[7],[8]]   => 2
[[1,3],[2],[4],[5],[6],[7],[8]]   => 0
[[1,2],[3],[4],[5],[6],[7],[8]]   => 10
[[1],[2],[3],[4],[5],[6],[7],[8]] => 0
[[1,2,3,4,5,6,7,8,9]]             => 81
[[1,2,3,4,5,6,7,8],[9]]           => 70
[[1,2,3,4,5,6,7],[8,9]]           => 59
[[1,2,3,4,5,6,7],[8],[9]]         => 61
[[1,3,4,5,6,7,8,9],[2]]           => 0
[[1,2,5,6,7,8,9],[3,4]]           => 9
[[1,4,5,6,7,8,9],[2],[3]]         => 7
[[1,2,3,7,8,9],[4,5,6]]           => 18
[[1,3,5,7,8,9],[2,4,6]]           => 0
[[1,3,5,6,7,8,9],[2,4]]           => 0
[[1,2,3,4,5,6,8],[7,9]]           => 55
[[1,2,3,4,5,6,7,9],[8]]           => 66
[[1,2,3,4,5,6,9],[7,8]]           => 53
[[1,2,3,4,5,6,9],[7],[8]]         => 57
[[1,2,4,5,6,7,8,9],[3]]           => 16
[[1,3,4,6,7,8,9],[2,5]]           => 0
[[1,3,5,6,7,8,9],[2],[4]]         => 0
[[1,3,5,6,8,9],[2,4,7]]           => 0
[[1,3,4,5,6,7,8],[2,9]]           => 0
[[1,3,4,5,6,7,8],[2],[9]]         => 0
[[1,2,3,6,7,8,9],[4,5]]           => 23
[[1,2,5,6,7,8,9],[3],[4]]         => 21
[[1,2,3,4,8,9],[5,6,7]]           => 30
[[1,2,3,4,7,8,9],[5,6]]           => 35
[[1,2,3,4,5,6,8],[7],[9]]         => 55
[[1,2,3,5,7,9],[4,6,8]]           => 26
[[1,2,3,4,5,7,9],[6,8]]           => 48
[[1,2,4,6,8,9],[3,5,7]]           => 14
[[1,2,4,6,7,8,9],[3,5]]           => 15
[[1,2,4,5,6,7,8],[3,9]]           => 15
[[1,3,4,5,7,9],[2,6,8]]           => 0
[[1,3,4,5,6,7,9],[2,8]]           => 0
[[1,2,3,5,6,7,8,9],[4]]           => 30
[[1,2,4,5,7,8,9],[3,6]]           => 15
[[1,2,4,6,7,8,9],[3],[5]]         => 15
[[1,2,4,6,7,9],[3,5,8]]           => 14
[[1,2,3,5,6,7,8],[4,9]]           => 28
[[1,2,4,5,6,7,8],[3],[9]]         => 15
[[1,2,3,4,5,6,8,9],[7]]           => 60
[[1,2,3,4,5,7,8,9],[6]]           => 52
[[1,2,3,4,6,7,8,9],[5]]           => 42
[[1,2,3,4,5,8,9],[6,7]]           => 45
[[1,2,3,4,5,8,9],[6],[7]]         => 51
[[1,2,3,4,7,8,9],[5],[6]]         => 43
[[1,2,3,6,7,8,9],[4],[5]]         => 33
[[1,3,4,7,8,9],[2,5,6]]           => 0
[[1,3,4,5,7,8,9],[2,6]]           => 0
[[1,3,4,6,7,8,9],[2],[5]]         => 0
[[1,3,5,6,7,9],[2,4,8]]           => 0
[[1,2,3,4,5,7,8],[6],[9]]         => 48
[[1,2,3,4,6,7,8],[5],[9]]         => 39
[[1,2,3,5,6,7,8],[4],[9]]         => 28
[[1,2,3,4,5,7,8],[6,9]]           => 48
[[1,3,4,5,6,8,9],[2,7]]           => 0
[[1,2,3,4,6,7,8],[5,9]]           => 39
[[1,2,5,7,8,9],[3,4,6]]           => 10
[[1,3,4,5,6,7,9],[2],[8]]         => 0
[[1,3,4,5,6,8,9],[2],[7]]         => 0
[[1,3,4,5,8,9],[2,6,7]]           => 0
[[1,2,3,5,7,8,9],[4,6]]           => 28
[[1,3,4,5,7,8,9],[2],[6]]         => 0
[[1,2,3,6,8,9],[4,5,7]]           => 23
[[1,2,3,4,6,8,9],[5,7]]           => 39
[[1,2,4,7,8,9],[3,5,6]]           => 10
[[1,2,3,4,5,7,9],[6],[8]]         => 48
[[1,2,3,5,8,9],[4,6,7]]           => 23
[[1,2,4,5,6,7,9],[3],[8]]         => 15
[[1,2,3,4,6,8,9],[5],[7]]         => 39
[[1,2,5,6,8,9],[3,4,7]]           => 10
[[1,2,5,6,7,9],[3,4,8]]           => 10
[[1,2,3,4,6,7,9],[5],[8]]         => 39
[[1,2,3,5,6,7,9],[4,8]]           => 28
[[1,2,3,5,6,8,9],[4,7]]           => 28
[[1,2,3,4,6,7,9],[5,8]]           => 39
[[1,2,4,5,8,9],[3,6,7]]           => 14
[[1,2,4,5,6,7,9],[3,8]]           => 15
[[1,2,4,5,7,9],[3,6,8]]           => 14
[[1,2,3,5,6,8,9],[4],[7]]         => 28
[[1,2,4,5,7,8,9],[3],[6]]         => 15
[[1,2,3,5,7,8,9],[4],[6]]         => 28
[[1,2,4,5,6,8,9],[3],[7]]         => 15
[[1,3,4,6,7,9],[2,5,8]]           => 0
[[1,3,4,6,8,9],[2,5,7]]           => 0
[[1,2,4,5,6,8,9],[3,7]]           => 15
[[1,2,3,6,7,9],[4,5,8]]           => 23
[[1,2,3,5,6,7,9],[4],[8]]         => 28

-----------------------------------------------------------------------------
Created: May 25, 2016 at 18:06 by Franco Saliola

-----------------------------------------------------------------------------
Last Updated: Mar 15, 2021 at 11:33 by Martin Rubey