*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000477

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The weight of a partition according to Alladi.

-----------------------------------------------------------------------------
References: [1]   Alladi, K. Partition identities involving gaps and weights [[MathSciNet:1401759]]

-----------------------------------------------------------------------------
Code:
def statistic(pi):
    """
    The weight according to Alladi.

    sage: r=8; RR = [pi for pi in Partitions(r) if all(pi[i] - pi[i+1] >= 2 for i in range(len(pi)-1))]
    sage: sum(weight(pi) for pi in RR) == Partitions(r).cardinality()
    """
    return pi[-1]*prod(pi[i] - pi[i+1] -1 for i in range(len(pi)-1))


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 2
[1,1]                     => -1
[3]                       => 3
[2,1]                     => 0
[1,1,1]                   => 1
[4]                       => 4
[3,1]                     => 1
[2,2]                     => -2
[2,1,1]                   => 0
[1,1,1,1]                 => -1
[5]                       => 5
[4,1]                     => 2
[3,2]                     => 0
[3,1,1]                   => -1
[2,2,1]                   => 0
[2,1,1,1]                 => 0
[1,1,1,1,1]               => 1
[6]                       => 6
[5,1]                     => 3
[4,2]                     => 2
[4,1,1]                   => -2
[3,3]                     => -3
[3,2,1]                   => 0
[3,1,1,1]                 => 1
[2,2,2]                   => 2
[2,2,1,1]                 => 0
[2,1,1,1,1]               => 0
[1,1,1,1,1,1]             => -1
[7]                       => 7
[6,1]                     => 4
[5,2]                     => 4
[5,1,1]                   => -3
[4,3]                     => 0
[4,2,1]                   => 0
[4,1,1,1]                 => 2
[3,3,1]                   => -1
[3,2,2]                   => 0
[3,2,1,1]                 => 0
[3,1,1,1,1]               => -1
[2,2,2,1]                 => 0
[2,2,1,1,1]               => 0
[2,1,1,1,1,1]             => 0
[1,1,1,1,1,1,1]           => 1
[8]                       => 8
[7,1]                     => 5
[6,2]                     => 6
[6,1,1]                   => -4
[5,3]                     => 3
[5,2,1]                   => 0
[5,1,1,1]                 => 3
[4,4]                     => -4
[4,3,1]                   => 0
[4,2,2]                   => -2
[4,2,1,1]                 => 0
[4,1,1,1,1]               => -2
[3,3,2]                   => 0
[3,3,1,1]                 => 1
[3,2,2,1]                 => 0
[3,2,1,1,1]               => 0
[3,1,1,1,1,1]             => 1
[2,2,2,2]                 => -2
[2,2,2,1,1]               => 0
[2,2,1,1,1,1]             => 0
[2,1,1,1,1,1,1]           => 0
[1,1,1,1,1,1,1,1]         => -1
[9]                       => 9
[8,1]                     => 6
[7,2]                     => 8
[7,1,1]                   => -5
[6,3]                     => 6
[6,2,1]                   => 0
[6,1,1,1]                 => 4
[5,4]                     => 0
[5,3,1]                   => 1
[5,2,2]                   => -4
[5,2,1,1]                 => 0
[5,1,1,1,1]               => -3
[4,4,1]                   => -2
[4,3,2]                   => 0
[4,3,1,1]                 => 0
[4,2,2,1]                 => 0
[4,2,1,1,1]               => 0
[4,1,1,1,1,1]             => 2
[3,3,3]                   => 3
[3,3,2,1]                 => 0
[3,3,1,1,1]               => -1
[3,2,2,2]                 => 0
[3,2,2,1,1]               => 0
[3,2,1,1,1,1]             => 0
[3,1,1,1,1,1,1]           => -1
[2,2,2,2,1]               => 0
[2,2,2,1,1,1]             => 0
[2,2,1,1,1,1,1]           => 0
[2,1,1,1,1,1,1,1]         => 0
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 10
[9,1]                     => 7
[8,2]                     => 10
[8,1,1]                   => -6
[7,3]                     => 9
[7,2,1]                   => 0
[7,1,1,1]                 => 5
[6,4]                     => 4
[6,3,1]                   => 2
[6,2,2]                   => -6
[6,2,1,1]                 => 0
[6,1,1,1,1]               => -4
[5,5]                     => -5
[5,4,1]                   => 0
[5,3,2]                   => 0
[5,3,1,1]                 => -1
[5,2,2,1]                 => 0
[5,2,1,1,1]               => 0
[5,1,1,1,1,1]             => 3
[4,4,2]                   => -2
[4,4,1,1]                 => 2
[4,3,3]                   => 0
[4,3,2,1]                 => 0
[4,3,1,1,1]               => 0
[4,2,2,2]                 => 2
[4,2,2,1,1]               => 0
[4,2,1,1,1,1]             => 0
[4,1,1,1,1,1,1]           => -2
[3,3,3,1]                 => 1
[3,3,2,2]                 => 0
[3,3,2,1,1]               => 0
[3,3,1,1,1,1]             => 1
[3,2,2,2,1]               => 0
[3,2,2,1,1,1]             => 0
[3,2,1,1,1,1,1]           => 0
[3,1,1,1,1,1,1,1]         => 1
[2,2,2,2,2]               => 2
[2,2,2,2,1,1]             => 0
[2,2,2,1,1,1,1]           => 0
[2,2,1,1,1,1,1,1]         => 0
[2,1,1,1,1,1,1,1,1]       => 0
[1,1,1,1,1,1,1,1,1,1]     => -1
[11]                      => 11
[10,1]                    => 8
[9,2]                     => 12
[9,1,1]                   => -7
[8,3]                     => 12
[8,2,1]                   => 0
[8,1,1,1]                 => 6
[7,4]                     => 8
[7,3,1]                   => 3
[7,2,2]                   => -8
[7,2,1,1]                 => 0
[7,1,1,1,1]               => -5
[6,5]                     => 0
[6,4,1]                   => 2
[6,3,2]                   => 0
[6,3,1,1]                 => -2
[6,2,2,1]                 => 0
[6,2,1,1,1]               => 0
[6,1,1,1,1,1]             => 4
[5,5,1]                   => -3
[5,4,2]                   => 0
[5,4,1,1]                 => 0
[5,3,3]                   => -3
[5,3,2,1]                 => 0
[5,3,1,1,1]               => 1
[5,2,2,2]                 => 4
[5,2,2,1,1]               => 0
[5,2,1,1,1,1]             => 0
[5,1,1,1,1,1,1]           => -3
[4,4,3]                   => 0
[4,4,2,1]                 => 0
[4,4,1,1,1]               => -2
[4,3,3,1]                 => 0
[4,3,2,2]                 => 0
[4,3,2,1,1]               => 0
[4,3,1,1,1,1]             => 0
[4,2,2,2,1]               => 0
[4,2,2,1,1,1]             => 0
[4,2,1,1,1,1,1]           => 0
[4,1,1,1,1,1,1,1]         => 2
[3,3,3,2]                 => 0
[3,3,3,1,1]               => -1
[3,3,2,2,1]               => 0
[3,3,2,1,1,1]             => 0
[3,3,1,1,1,1,1]           => -1
[3,2,2,2,2]               => 0
[3,2,2,2,1,1]             => 0
[3,2,2,1,1,1,1]           => 0
[3,2,1,1,1,1,1,1]         => 0
[3,1,1,1,1,1,1,1,1]       => -1
[2,2,2,2,2,1]             => 0
[2,2,2,2,1,1,1]           => 0
[2,2,2,1,1,1,1,1]         => 0
[2,2,1,1,1,1,1,1,1]       => 0
[2,1,1,1,1,1,1,1,1,1]     => 0
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 12
[11,1]                    => 9
[10,2]                    => 14
[10,1,1]                  => -8
[9,3]                     => 15
[9,2,1]                   => 0
[9,1,1,1]                 => 7
[8,4]                     => 12
[8,3,1]                   => 4
[8,2,2]                   => -10
[8,2,1,1]                 => 0
[8,1,1,1,1]               => -6
[7,5]                     => 5
[7,4,1]                   => 4
[7,3,2]                   => 0
[7,3,1,1]                 => -3
[7,2,2,1]                 => 0
[7,2,1,1,1]               => 0
[7,1,1,1,1,1]             => 5
[6,6]                     => -6
[6,5,1]                   => 0
[6,4,2]                   => 2
[6,4,1,1]                 => -2
[6,3,3]                   => -6
[6,3,2,1]                 => 0
[6,3,1,1,1]               => 2
[6,2,2,2]                 => 6
[6,2,2,1,1]               => 0
[6,2,1,1,1,1]             => 0
[6,1,1,1,1,1,1]           => -4
[5,5,2]                   => -4
[5,5,1,1]                 => 3
[5,4,3]                   => 0
[5,4,2,1]                 => 0
[5,4,1,1,1]               => 0
[5,3,3,1]                 => -1
[5,3,2,2]                 => 0
[5,3,2,1,1]               => 0
[5,3,1,1,1,1]             => -1
[5,2,2,2,1]               => 0
[5,2,2,1,1,1]             => 0
[5,2,1,1,1,1,1]           => 0
[5,1,1,1,1,1,1,1]         => 3
[4,4,4]                   => 4
[4,4,3,1]                 => 0
[4,4,2,2]                 => 2
[4,4,2,1,1]               => 0
[4,4,1,1,1,1]             => 2
[4,3,3,2]                 => 0
[4,3,3,1,1]               => 0
[4,3,2,2,1]               => 0
[4,3,2,1,1,1]             => 0
[4,3,1,1,1,1,1]           => 0
[4,2,2,2,2]               => -2
[4,2,2,2,1,1]             => 0
[4,2,2,1,1,1,1]           => 0
[4,2,1,1,1,1,1,1]         => 0
[4,1,1,1,1,1,1,1,1]       => -2
[3,3,3,3]                 => -3
[3,3,3,2,1]               => 0
[3,3,3,1,1,1]             => 1
[3,3,2,2,2]               => 0
[3,3,2,2,1,1]             => 0
[3,3,2,1,1,1,1]           => 0
[3,3,1,1,1,1,1,1]         => 1
[3,2,2,2,2,1]             => 0
[3,2,2,2,1,1,1]           => 0
[3,2,2,1,1,1,1,1]         => 0
[3,2,1,1,1,1,1,1,1]       => 0
[3,1,1,1,1,1,1,1,1,1]     => 1
[2,2,2,2,2,2]             => -2
[2,2,2,2,2,1,1]           => 0
[2,2,2,2,1,1,1,1]         => 0
[2,2,2,1,1,1,1,1,1]       => 0
[2,2,1,1,1,1,1,1,1,1]     => 0
[2,1,1,1,1,1,1,1,1,1,1]   => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => -1

-----------------------------------------------------------------------------
Created: May 03, 2016 at 08:01 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: May 03, 2016 at 11:59 by Martin Rubey