Processing math: 80%

Identifier
Values
[1] => [[1]] => [1] => [1] => 1
[2] => [[1,2]] => [1,2] => [1,1] => 2
[1,1] => [[1],[2]] => [2,1] => [2] => 2
[3] => [[1,2,3]] => [1,2,3] => [1,1,1] => 3
[2,1] => [[1,2],[3]] => [3,1,2] => [2,1] => 3
[1,1,1] => [[1],[2],[3]] => [3,2,1] => [3] => 3
[4] => [[1,2,3,4]] => [1,2,3,4] => [1,1,1,1] => 4
[3,1] => [[1,2,3],[4]] => [4,1,2,3] => [2,1,1] => 4
[2,2] => [[1,2],[3,4]] => [3,4,1,2] => [2,1,1] => 4
[2,1,1] => [[1,2],[3],[4]] => [4,3,1,2] => [3,1] => 4
[1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => [4] => 4
[5] => [[1,2,3,4,5]] => [1,2,3,4,5] => [1,1,1,1,1] => 5
[4,1] => [[1,2,3,4],[5]] => [5,1,2,3,4] => [2,1,1,1] => 5
[3,2] => [[1,2,3],[4,5]] => [4,5,1,2,3] => [2,1,1,1] => 5
[3,1,1] => [[1,2,3],[4],[5]] => [5,4,1,2,3] => [3,1,1] => 5
[2,2,1] => [[1,2],[3,4],[5]] => [5,3,4,1,2] => [3,1,1] => 5
[2,1,1,1] => [[1,2],[3],[4],[5]] => [5,4,3,1,2] => [4,1] => 5
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [5,4,3,2,1] => [5] => 5
[6] => [[1,2,3,4,5,6]] => [1,2,3,4,5,6] => [1,1,1,1,1,1] => 6
[5,1] => [[1,2,3,4,5],[6]] => [6,1,2,3,4,5] => [2,1,1,1,1] => 6
[4,2] => [[1,2,3,4],[5,6]] => [5,6,1,2,3,4] => [2,1,1,1,1] => 6
[4,1,1] => [[1,2,3,4],[5],[6]] => [6,5,1,2,3,4] => [3,1,1,1] => 6
[3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => [2,1,1,1,1] => 6
[3,2,1] => [[1,2,3],[4,5],[6]] => [6,4,5,1,2,3] => [3,1,1,1] => 6
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => [6,5,4,1,2,3] => [4,1,1] => 6
[2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => [3,1,1,1] => 6
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => [6,5,3,4,1,2] => [4,1,1] => 6
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [6,5,4,3,1,2] => [5,1] => 6
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [6,5,4,3,2,1] => [6] => 6
[7] => [[1,2,3,4,5,6,7]] => [1,2,3,4,5,6,7] => [1,1,1,1,1,1,1] => 7
[6,1] => [[1,2,3,4,5,6],[7]] => [7,1,2,3,4,5,6] => [2,1,1,1,1,1] => 7
[5,2] => [[1,2,3,4,5],[6,7]] => [6,7,1,2,3,4,5] => [2,1,1,1,1,1] => 7
[5,1,1] => [[1,2,3,4,5],[6],[7]] => [7,6,1,2,3,4,5] => [3,1,1,1,1] => 7
[4,3] => [[1,2,3,4],[5,6,7]] => [5,6,7,1,2,3,4] => [2,1,1,1,1,1] => 7
[4,2,1] => [[1,2,3,4],[5,6],[7]] => [7,5,6,1,2,3,4] => [3,1,1,1,1] => 7
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [7,6,5,1,2,3,4] => [4,1,1,1] => 7
[3,3,1] => [[1,2,3],[4,5,6],[7]] => [7,4,5,6,1,2,3] => [3,1,1,1,1] => 7
[3,2,2] => [[1,2,3],[4,5],[6,7]] => [6,7,4,5,1,2,3] => [3,1,1,1,1] => 7
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [7,6,4,5,1,2,3] => [4,1,1,1] => 7
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [7,6,5,4,1,2,3] => [5,1,1] => 7
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [7,5,6,3,4,1,2] => [4,1,1,1] => 7
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [7,6,5,3,4,1,2] => [5,1,1] => 7
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [7,6,5,4,3,1,2] => [6,1] => 7
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [7,6,5,4,3,2,1] => [7] => 7
[8] => [[1,2,3,4,5,6,7,8]] => [1,2,3,4,5,6,7,8] => [1,1,1,1,1,1,1,1] => 8
[7,1] => [[1,2,3,4,5,6,7],[8]] => [8,1,2,3,4,5,6,7] => [2,1,1,1,1,1,1] => 8
[6,2] => [[1,2,3,4,5,6],[7,8]] => [7,8,1,2,3,4,5,6] => [2,1,1,1,1,1,1] => 8
[6,1,1] => [[1,2,3,4,5,6],[7],[8]] => [8,7,1,2,3,4,5,6] => [3,1,1,1,1,1] => 8
[5,3] => [[1,2,3,4,5],[6,7,8]] => [6,7,8,1,2,3,4,5] => [2,1,1,1,1,1,1] => 8
[5,2,1] => [[1,2,3,4,5],[6,7],[8]] => [8,6,7,1,2,3,4,5] => [3,1,1,1,1,1] => 8
[5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => [8,7,6,1,2,3,4,5] => [4,1,1,1,1] => 8
[4,4] => [[1,2,3,4],[5,6,7,8]] => [5,6,7,8,1,2,3,4] => [2,1,1,1,1,1,1] => 8
[4,3,1] => [[1,2,3,4],[5,6,7],[8]] => [8,5,6,7,1,2,3,4] => [3,1,1,1,1,1] => 8
[4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [7,8,5,6,1,2,3,4] => [3,1,1,1,1,1] => 8
[4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => [8,7,5,6,1,2,3,4] => [4,1,1,1,1] => 8
[4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => [8,7,6,5,1,2,3,4] => [5,1,1,1] => 8
[3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [7,8,4,5,6,1,2,3] => [3,1,1,1,1,1] => 8
[3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => [8,7,4,5,6,1,2,3] => [4,1,1,1,1] => 8
[3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [8,6,7,4,5,1,2,3] => [4,1,1,1,1] => 8
[3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => [8,7,6,4,5,1,2,3] => [5,1,1,1] => 8
[3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => [8,7,6,5,4,1,2,3] => [6,1,1] => 8
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [7,8,5,6,3,4,1,2] => [4,1,1,1,1] => 8
[2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [8,7,5,6,3,4,1,2] => [5,1,1,1] => 8
[2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => [8,7,6,5,3,4,1,2] => [6,1,1] => 8
[2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => [8,7,6,5,4,3,1,2] => [7,1] => 8
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [8,7,6,5,4,3,2,1] => [8] => 8
[9] => [[1,2,3,4,5,6,7,8,9]] => [1,2,3,4,5,6,7,8,9] => [1,1,1,1,1,1,1,1,1] => 9
[8,1] => [[1,2,3,4,5,6,7,8],[9]] => [9,1,2,3,4,5,6,7,8] => [2,1,1,1,1,1,1,1] => 9
[7,2] => [[1,2,3,4,5,6,7],[8,9]] => [8,9,1,2,3,4,5,6,7] => [2,1,1,1,1,1,1,1] => 9
[7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => [9,8,1,2,3,4,5,6,7] => [3,1,1,1,1,1,1] => 9
[6,3] => [[1,2,3,4,5,6],[7,8,9]] => [7,8,9,1,2,3,4,5,6] => [2,1,1,1,1,1,1,1] => 9
[6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => [9,7,8,1,2,3,4,5,6] => [3,1,1,1,1,1,1] => 9
[6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => [9,8,7,1,2,3,4,5,6] => [4,1,1,1,1,1] => 9
[5,4] => [[1,2,3,4,5],[6,7,8,9]] => [6,7,8,9,1,2,3,4,5] => [2,1,1,1,1,1,1,1] => 9
[5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => [9,6,7,8,1,2,3,4,5] => [3,1,1,1,1,1,1] => 9
[5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => [8,9,6,7,1,2,3,4,5] => [3,1,1,1,1,1,1] => 9
[5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => [9,8,6,7,1,2,3,4,5] => [4,1,1,1,1,1] => 9
[5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => [9,8,7,6,1,2,3,4,5] => [5,1,1,1,1] => 9
[4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => [9,5,6,7,8,1,2,3,4] => [3,1,1,1,1,1,1] => 9
[4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => [8,9,5,6,7,1,2,3,4] => [3,1,1,1,1,1,1] => 9
[4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => [9,8,5,6,7,1,2,3,4] => [4,1,1,1,1,1] => 9
[4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => [9,7,8,5,6,1,2,3,4] => [4,1,1,1,1,1] => 9
[4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => [9,8,7,5,6,1,2,3,4] => [5,1,1,1,1] => 9
[4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => [9,8,7,6,5,1,2,3,4] => [6,1,1,1] => 9
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [7,8,9,4,5,6,1,2,3] => [3,1,1,1,1,1,1] => 9
[3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => [9,7,8,4,5,6,1,2,3] => [4,1,1,1,1,1] => 9
[3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => [9,8,7,4,5,6,1,2,3] => [5,1,1,1,1] => 9
[3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => [8,9,6,7,4,5,1,2,3] => [4,1,1,1,1,1] => 9
[3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => [9,8,6,7,4,5,1,2,3] => [5,1,1,1,1] => 9
[3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => [9,8,7,6,4,5,1,2,3] => [6,1,1,1] => 9
[3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => [9,8,7,6,5,4,1,2,3] => [7,1,1] => 9
[2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => [9,7,8,5,6,3,4,1,2] => [5,1,1,1,1] => 9
[2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => [9,8,7,5,6,3,4,1,2] => [6,1,1,1] => 9
[2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => [9,8,7,6,5,3,4,1,2] => [7,1,1] => 9
[2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => [9,8,7,6,5,4,3,1,2] => [8,1] => 9
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [9,8,7,6,5,4,3,2,1] => [9] => 9
[10] => [[1,2,3,4,5,6,7,8,9,10]] => [1,2,3,4,5,6,7,8,9,10] => [1,1,1,1,1,1,1,1,1,1] => 10
[9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => [10,1,2,3,4,5,6,7,8,9] => [2,1,1,1,1,1,1,1,1] => 10
[8,2] => [[1,2,3,4,5,6,7,8],[9,10]] => [9,10,1,2,3,4,5,6,7,8] => [2,1,1,1,1,1,1,1,1] => 10
[8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => [10,9,1,2,3,4,5,6,7,8] => [3,1,1,1,1,1,1,1] => 10
[7,3] => [[1,2,3,4,5,6,7],[8,9,10]] => [8,9,10,1,2,3,4,5,6,7] => [2,1,1,1,1,1,1,1,1] => 10
>>> Load all 145 entries. <<<
[7,2,1] => [[1,2,3,4,5,6,7],[8,9],[10]] => [10,8,9,1,2,3,4,5,6,7] => [3,1,1,1,1,1,1,1] => 10
[7,1,1,1] => [[1,2,3,4,5,6,7],[8],[9],[10]] => [10,9,8,1,2,3,4,5,6,7] => [4,1,1,1,1,1,1] => 10
[6,4] => [[1,2,3,4,5,6],[7,8,9,10]] => [7,8,9,10,1,2,3,4,5,6] => [2,1,1,1,1,1,1,1,1] => 10
[6,3,1] => [[1,2,3,4,5,6],[7,8,9],[10]] => [10,7,8,9,1,2,3,4,5,6] => [3,1,1,1,1,1,1,1] => 10
[6,2,2] => [[1,2,3,4,5,6],[7,8],[9,10]] => [9,10,7,8,1,2,3,4,5,6] => [3,1,1,1,1,1,1,1] => 10
[6,2,1,1] => [[1,2,3,4,5,6],[7,8],[9],[10]] => [10,9,7,8,1,2,3,4,5,6] => [4,1,1,1,1,1,1] => 10
[6,1,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9],[10]] => [10,9,8,7,1,2,3,4,5,6] => [5,1,1,1,1,1] => 10
[5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => [6,7,8,9,10,1,2,3,4,5] => [2,1,1,1,1,1,1,1,1] => 10
[5,4,1] => [[1,2,3,4,5],[6,7,8,9],[10]] => [10,6,7,8,9,1,2,3,4,5] => [3,1,1,1,1,1,1,1] => 10
[5,3,2] => [[1,2,3,4,5],[6,7,8],[9,10]] => [9,10,6,7,8,1,2,3,4,5] => [3,1,1,1,1,1,1,1] => 10
[5,3,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10]] => [10,9,6,7,8,1,2,3,4,5] => [4,1,1,1,1,1,1] => 10
[5,2,2,1] => [[1,2,3,4,5],[6,7],[8,9],[10]] => [10,8,9,6,7,1,2,3,4,5] => [4,1,1,1,1,1,1] => 10
[5,2,1,1,1] => [[1,2,3,4,5],[6,7],[8],[9],[10]] => [10,9,8,6,7,1,2,3,4,5] => [5,1,1,1,1,1] => 10
[5,1,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,1,2,3,4,5] => [6,1,1,1,1] => 10
[4,4,2] => [[1,2,3,4],[5,6,7,8],[9,10]] => [9,10,5,6,7,8,1,2,3,4] => [3,1,1,1,1,1,1,1] => 10
[4,4,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10]] => [10,9,5,6,7,8,1,2,3,4] => [4,1,1,1,1,1,1] => 10
[4,3,3] => [[1,2,3,4],[5,6,7],[8,9,10]] => [8,9,10,5,6,7,1,2,3,4] => [3,1,1,1,1,1,1,1] => 10
[4,3,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10]] => [10,8,9,5,6,7,1,2,3,4] => [4,1,1,1,1,1,1] => 10
[4,3,1,1,1] => [[1,2,3,4],[5,6,7],[8],[9],[10]] => [10,9,8,5,6,7,1,2,3,4] => [5,1,1,1,1,1] => 10
[4,2,2,2] => [[1,2,3,4],[5,6],[7,8],[9,10]] => [9,10,7,8,5,6,1,2,3,4] => [4,1,1,1,1,1,1] => 10
[4,2,2,1,1] => [[1,2,3,4],[5,6],[7,8],[9],[10]] => [10,9,7,8,5,6,1,2,3,4] => [5,1,1,1,1,1] => 10
[4,2,1,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9],[10]] => [10,9,8,7,5,6,1,2,3,4] => [6,1,1,1,1] => 10
[4,1,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,5,1,2,3,4] => [7,1,1,1] => 10
[3,3,3,1] => [[1,2,3],[4,5,6],[7,8,9],[10]] => [10,7,8,9,4,5,6,1,2,3] => [4,1,1,1,1,1,1] => 10
[3,3,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10]] => [9,10,7,8,4,5,6,1,2,3] => [4,1,1,1,1,1,1] => 10
[3,3,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9],[10]] => [10,9,7,8,4,5,6,1,2,3] => [5,1,1,1,1,1] => 10
[3,3,1,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9],[10]] => [10,9,8,7,4,5,6,1,2,3] => [6,1,1,1,1] => 10
[3,2,2,2,1] => [[1,2,3],[4,5],[6,7],[8,9],[10]] => [10,8,9,6,7,4,5,1,2,3] => [5,1,1,1,1,1] => 10
[3,2,2,1,1,1] => [[1,2,3],[4,5],[6,7],[8],[9],[10]] => [10,9,8,6,7,4,5,1,2,3] => [6,1,1,1,1] => 10
[3,2,1,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,4,5,1,2,3] => [7,1,1,1] => 10
[3,1,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,5,4,1,2,3] => [8,1,1] => 10
[2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10]] => [9,10,7,8,5,6,3,4,1,2] => [5,1,1,1,1,1] => 10
[2,2,2,2,1,1] => [[1,2],[3,4],[5,6],[7,8],[9],[10]] => [10,9,7,8,5,6,3,4,1,2] => [6,1,1,1,1] => 10
[2,2,2,1,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9],[10]] => [10,9,8,7,5,6,3,4,1,2] => [7,1,1,1] => 10
[2,2,1,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,5,3,4,1,2] => [8,1,1] => 10
[2,1,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,5,4,3,1,2] => [9,1] => 10
[1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,5,4,3,2,1] => [10] => 10
[12] => [[1,2,3,4,5,6,7,8,9,10,11,12]] => [1,2,3,4,5,6,7,8,9,10,11,12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 12
[6,6] => [[1,2,3,4,5,6],[7,8,9,10,11,12]] => [7,8,9,10,11,12,1,2,3,4,5,6] => [2,1,1,1,1,1,1,1,1,1,1] => 12
[6,4,2] => [[1,2,3,4,5,6],[7,8,9,10],[11,12]] => [11,12,7,8,9,10,1,2,3,4,5,6] => [3,1,1,1,1,1,1,1,1,1] => 12
[4,4,2,2] => [[1,2,3,4],[5,6,7,8],[9,10],[11,12]] => [11,12,9,10,5,6,7,8,1,2,3,4] => [4,1,1,1,1,1,1,1,1] => 12
[4,2,2,2,2] => [[1,2,3,4],[5,6],[7,8],[9,10],[11,12]] => [11,12,9,10,7,8,5,6,1,2,3,4] => [5,1,1,1,1,1,1,1] => 12
[2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => [11,12,9,10,7,8,5,6,3,4,1,2] => [6,1,1,1,1,1,1] => 12
[1,1,1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]] => [12,11,10,9,8,7,6,5,4,3,2,1] => [12] => 12
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The hook length of the last cell along the main diagonal of an integer partition.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
LLPS
Description
The Lewis-Lyu-Pylyavskyy-Sen shape of a permutation.
An ascent in a sequence u=(u1,u2,) is an index i such that ui<ui+1. Let asc(u) denote the number of ascents of u, and let
asc(u):={0if u is empty,1+asc(u)otherwise.
Given a permutation w in the symmetric group Sn, define
Ak:=max
where the maximum is taken over disjoint subsequences {u_i} of w.
Then A'_1, A'_2-A'_1, A'_3-A'_2,\dots is a partition of n. Its conjugate is the Lewis-Lyu-Pylyavskyy-Sen shape of a permutation.