Identifier
Values
[2] => [1,0,1,0] => [2,1] => ([(0,1)],2) => 1
[2,1] => [1,0,1,1,0,0] => [2,3,1] => ([(0,2),(1,2)],3) => 1
[3,1] => [1,0,1,0,1,1,0,0] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4) => 1
[3,2] => [1,0,1,1,1,0,0,0] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => 1
[3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[4,2] => [1,0,1,0,1,1,1,0,0,0] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 2
[4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 2
[4,2,1] => [1,0,1,0,1,1,1,0,0,1,0,0] => [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 1
[4,1,1,1] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [2,4,1,6,3,7,5] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
[5,2,1] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0] => [2,4,1,6,7,3,5] => ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => 2
[4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
[6,3] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [2,4,6,1,7,3,5] => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 3
[5,2,2] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [2,4,6,7,1,3,5] => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 4
[4,3,2] => [1,0,1,1,1,0,1,1,0,0,0,0] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 1
[4,2,2,1] => [1,0,1,0,1,1,1,1,0,0,0,1,0,0] => [2,4,1,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 1
[4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[4,2,2,2] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [2,4,5,6,1,7,3] => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
[5,3,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [2,4,5,6,7,1,3] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 4
[4,3,2,2] => [1,0,1,1,1,0,1,1,0,1,0,0,0,0] => [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 1
[5,4,3] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [2,3,4,6,7,1,5] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 2
[4,3,3,3] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
search for individual values
searching the database for the individual values of this statistic
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
Map
to 321-avoiding permutation
Description
Sends a Dyck path to a 321-avoiding permutation.
This bijection defined in [3, pp. 60] and in [2, Section 3.1].
It is shown in [1] that it sends the number of centered tunnels to the number of fixed points, the number of right tunnels to the number of exceedences, and the semilength plus the height of the middle point to 2 times the length of the longest increasing subsequence.