Identifier
Values
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => 0
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => 0
[[[[]]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => 0
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
[[],[[],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
[[[],[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
[[[],[[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
[[[[]],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 0
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 0
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 0
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
[[[],[],[[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
[[[],[[]],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
[[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 0
[[[[]],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
[[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 0
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[[]],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[[],[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[[],[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[[],[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[[],[],[],[[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[[],[],[[]],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[[],[],[[],[]]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[[],[[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[[],[[],[]],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[[],[[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[[[]],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
[[[[],[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[[[],[],[]],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[[[[],[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 0
search for individual values
searching the database for the individual values of this statistic
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
Map
square
Description
The square of a graph.
For a graph $G$, the square is the graph on the same set of vertices where two vertices are joined by an edge if there is a path in $G$ of length at most two between the two.
In other words, a vertex gets joint to its $2$-neighbourhood in G.