Identifier
-
Mp00043:
Integer partitions
—to Dyck path⟶
Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000441: Permutations ⟶ ℤ
Values
[1] => [1,0,1,0] => [1,1,0,0] => [1,2] => 1
[2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => [3,1,2] => 1
[1,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [2,1,3] => 0
[3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => [4,3,1,2] => 1
[2,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,2,3] => 2
[1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [3,2,1,4] => 0
[4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [5,4,3,1,2] => 1
[3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [3,4,1,2] => 2
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => [4,2,1,3] => 0
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => [2,3,1,4] => 1
[1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 0
[5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,1,2] => 1
[4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [4,5,3,1,2] => 2
[3,2] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => [4,1,2,3] => 2
[3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,1,2,4] => 1
[2,2,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => [2,1,3,4] => 1
[2,1,1,1] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [3,4,2,1,5] => 1
[1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [5,4,3,2,1,6] => 0
[6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [7,6,5,4,3,1,2] => 1
[5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [5,6,4,3,1,2] => 2
[4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [5,3,4,1,2] => 2
[4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [4,3,5,1,2] => 1
[3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [5,4,2,1,3] => 0
[3,2,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 3
[3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [4,2,3,1,5] => 1
[2,2,2] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [5,3,2,1,4] => 0
[2,2,1,1] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [3,2,4,1,5] => 0
[2,1,1,1,1] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [4,5,3,2,1,6] => 1
[1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [6,5,4,3,2,1,7] => 0
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [8,7,6,5,4,3,1,2] => 1
[5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [6,4,5,3,1,2] => 2
[5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => [5,4,6,3,1,2] => 1
[4,3] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [5,4,1,2,3] => 2
[4,2,1] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [3,4,5,1,2] => 3
[4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [4,3,1,2,5] => 1
[3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [4,5,2,1,3] => 1
[3,2,2] => [1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [5,2,3,1,4] => 1
[3,2,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,3,4,1,5] => 2
[3,1,1,1,1] => [1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [5,3,4,2,1,6] => 1
[2,2,2,1] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [3,2,1,4,5] => 1
[2,2,1,1,1] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [4,3,5,2,1,6] => 0
[2,1,1,1,1,1] => [1,0,1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [5,6,4,3,2,1,7] => 1
[1,1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [7,6,5,4,3,2,1,8] => 0
[8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [9,8,7,6,5,4,3,1,2] => 1
[7,1] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0] => [7,8,6,5,4,3,1,2] => 2
[5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [6,5,3,4,1,2] => 2
[5,2,1] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [4,5,6,3,1,2] => 3
[5,1,1,1] => [1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [5,4,3,6,1,2] => 1
[4,4] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [6,5,4,2,1,3] => 0
[4,3,1] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [4,5,1,2,3] => 3
[4,2,2] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [5,3,1,2,4] => 1
[4,2,1,1] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [3,4,1,2,5] => 2
[4,1,1,1,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [5,4,2,3,1,6] => 1
[3,3,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [5,2,1,3,4] => 1
[3,3,1,1] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [4,2,1,3,5] => 0
[3,2,2,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => [2,3,1,4,5] => 2
[3,2,1,1,1] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [3,4,5,2,1,6] => 2
[2,2,2,2] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [6,4,3,2,1,5] => 0
[2,2,2,1,1] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [4,3,2,5,1,6] => 0
[2,2,1,1,1,1] => [1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [5,4,6,3,2,1,7] => 0
[2,1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0] => [6,7,5,4,3,2,1,8] => 1
[1,1,1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,7,6,5,4,3,2,1,9] => 0
[9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [10,9,8,7,6,5,4,3,1,2] => 1
[7,2] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0] => [8,6,7,5,4,3,1,2] => 2
[5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [6,5,4,1,2,3] => 2
[5,3,1] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [5,6,3,4,1,2] => 3
[5,2,2] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [6,4,3,5,1,2] => 1
[5,2,1,1] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [4,5,3,6,1,2] => 2
[5,1,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [5,4,3,1,2,6] => 1
[4,4,1] => [1,1,1,0,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => [5,6,4,2,1,3] => 1
[4,3,2] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [5,1,2,3,4] => 3
[4,3,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,3,5] => 2
[4,2,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [3,1,2,4,5] => 2
[4,2,1,1,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [4,5,2,3,1,6] => 2
[4,1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [6,5,3,4,2,1,7] => 1
[3,3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [6,5,3,2,1,4] => 0
[3,3,2,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [2,1,3,4,5] => 2
[3,3,1,1,1] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [5,3,2,4,1,6] => 0
[3,2,2,2] => [1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [6,3,4,2,1,5] => 1
[3,2,2,1,1] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [3,4,2,5,1,6] => 1
[3,2,1,1,1,1] => [1,0,1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [4,5,6,3,2,1,7] => 2
[2,2,2,2,1] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 1
[2,2,2,1,1,1] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [5,4,3,6,2,1,7] => 0
[2,2,1,1,1,1,1] => [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0] => [6,5,7,4,3,2,1,8] => 0
[2,1,1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0] => [7,8,6,5,4,3,2,1,9] => 1
[1,1,1,1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [9,8,7,6,5,4,3,2,1,10] => 0
[7,3] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0] => [8,7,5,6,4,3,1,2] => 2
[6,4] => [1,1,1,1,1,0,0,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [7,6,5,3,4,1,2] => 2
[5,4,1] => [1,1,1,0,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [5,6,4,1,2,3] => 3
[5,3,2] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [6,3,4,5,1,2] => 3
[5,3,1,1] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => [5,3,4,6,1,2] => 2
[5,2,2,1] => [1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => [4,3,5,6,1,2] => 2
[5,2,1,1,1] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [4,5,3,1,2,6] => 2
[4,4,2] => [1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [6,4,5,2,1,3] => 1
[4,4,1,1] => [1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [5,4,6,2,1,3] => 0
[4,3,3] => [1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => [6,5,2,3,1,4] => 1
[4,3,2,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 4
[4,3,1,1,1] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [5,2,3,4,1,6] => 2
[4,2,2,2] => [1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [6,4,2,3,1,5] => 1
[4,2,2,1,1] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [4,2,3,5,1,6] => 1
[4,1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0] => [7,6,4,5,3,2,1,8] => 1
>>> Load all 300 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of successions of a permutation.
A succession of a permutation $\pi$ is an index $i$ such that $\pi(i)+1 = \pi(i+1)$. Successions are also known as small ascents or 1-rises.
A succession of a permutation $\pi$ is an index $i$ such that $\pi(i)+1 = \pi(i+1)$. Successions are also known as small ascents or 1-rises.
Map
to 132-avoiding permutation
Description
Sends a Dyck path to a 132-avoiding permutation.
This bijection is defined in [1, Section 2].
This bijection is defined in [1, Section 2].
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!