Identifier
Values
[1] => [1,0,1,0] => [1,1,0,1,0,0] => [2,3,1] => 0
[2] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,2,4,1] => 0
[1,1] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [2,4,3,1] => 0
[3] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,3,2,5,1] => 0
[2,1] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [2,3,4,1] => 0
[1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,5,4,3,1] => 0
[4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,4,3,2,6,1] => 0
[3,1] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [3,4,2,5,1] => 0
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [3,2,5,4,1] => 0
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [2,4,5,3,1] => 0
[1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,5,4,3,1] => 0
[4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [4,5,3,2,6,1] => 0
[3,2] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [3,2,4,5,1] => 0
[3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [2,4,3,5,1] => 1
[2,2,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [2,3,5,4,1] => 0
[2,1,1,1] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [2,5,6,4,3,1] => 0
[6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0] => [7,6,5,4,3,2,8,1] => 0
[4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [4,3,5,2,6,1] => 0
[4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [3,5,4,2,6,1] => 1
[3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,3,2,6,5,1] => 0
[3,2,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => 0
[3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [2,5,4,6,3,1] => 1
[2,2,2] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,2,6,5,4,1] => 0
[2,2,1,1] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [2,4,6,5,3,1] => 0
[4,3] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [4,3,2,5,6,1] => 0
[4,2,1] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [3,4,5,2,6,1] => 0
[4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [2,5,4,3,6,1] => 3
[3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [3,4,2,6,5,1] => 0
[3,2,2] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [3,2,5,6,4,1] => 0
[3,2,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [2,4,5,6,3,1] => 0
[2,2,2,1] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [2,3,6,5,4,1] => 0
[6,2] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0] => [6,5,7,4,3,2,8,1] => 0
[4,3,1] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [3,4,2,5,6,1] => 0
[4,2,2] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [3,2,5,4,6,1] => 2
[4,2,1,1] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [2,4,5,3,6,1] => 2
[3,3,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [3,2,4,6,5,1] => 0
[3,3,1,1] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [2,4,3,6,5,1] => 2
[3,2,2,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [2,3,5,6,4,1] => 0
[2,2,1,1,1,1] => [1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0] => [2,6,8,7,5,4,3,1] => 0
[4,3,2] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [3,2,4,5,6,1] => 0
[4,3,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [2,4,3,5,6,1] => 2
[4,2,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [2,3,5,4,6,1] => 2
[3,3,2,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,6,5,1] => 0
[6,4] => [1,1,1,1,1,0,0,0,0,1,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0] => [6,5,4,3,7,2,8,1] => 0
[4,3,2,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,1] => 0
[5,4,2] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,1,0,0] => [4,3,5,2,6,7,1] => 0
[5,3,2,1] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [3,4,5,6,2,7,1] => 0
[6,4,2] => [1,1,1,1,0,0,1,0,0,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0] => [5,4,6,3,7,2,8,1] => 0
[5,4,3] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [4,3,2,5,6,7,1] => 0
[5,4,2,1] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [3,4,5,2,6,7,1] => 0
[5,4,3,1] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [3,4,2,5,6,7,1] => 0
[6,4,2,2] => [1,1,1,0,0,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0] => [4,3,6,5,7,2,8,1] => 4
[5,4,3,2] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [3,2,4,5,6,7,1] => 0
[5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,1] => 0
[6,4,4,2] => [1,1,1,0,0,1,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0] => [4,3,5,2,7,6,8,1] => 4
[6,4,2,2,2] => [1,1,0,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0] => [3,2,6,5,7,4,8,1] => 10
[5,5,2,2,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0] => [3,2,6,5,4,8,7,1] => 12
[4,4,3,2,2,1] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0] => [2,3,5,6,8,7,4,1] => 0
[] => [] => [1,0] => [1] => 0
[6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,8,1] => 0
[6,5,4,3,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [3,2,4,5,6,7,8,1] => 0
[6,4,4,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0] => [3,2,5,4,7,6,8,1] => 10
[6,5,4,3,1] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0] => [3,4,2,5,6,7,8,1] => 0
[6,5,4,2,1] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0] => [3,4,5,2,6,7,8,1] => 0
[6,5,4,3] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0] => [4,3,2,5,6,7,8,1] => 0
[7,6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,8,9,1] => 0
[7,6,5,4,3,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [3,2,4,5,6,7,8,9,1] => 0
[7,6,5,4,3,1] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [3,4,2,5,6,7,8,9,1] => 0
[8,7,6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,8,9,10,1] => 0
[9,8,7,6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,8,9,10,11,1] => 0
[8,7,6,5,4,3,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [3,2,4,5,6,7,8,9,10,1] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of occurrences of the pattern 1324 in a permutation.
There is no explicit formula known for the number of permutations avoiding this pattern (denoted by $S_n(1324)$), but it is shown in [1], improving bounds in [2] and [3] that
$$\lim_{n \rightarrow \infty} \sqrt[n]{S_n(1324)} \leq 13.73718.$$
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to 312-avoiding permutation
Description
Sends a Dyck path to the 312-avoiding permutation according to Bandlow-Killpatrick.
This map is defined in [1] and sends the area (St000012The area of a Dyck path.) to the inversion number (St000018The number of inversions of a permutation.).
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.