Identifier
Values
[1] => [1] => 0
[2] => [1,1] => 1
[1,1] => [2] => 0
[3] => [1,1,1] => 2
[2,1] => [3] => 1
[1,1,1] => [2,1] => 0
[4] => [1,1,1,1] => 3
[3,1] => [2,1,1] => 2
[2,2] => [4] => 2
[2,1,1] => [2,2] => 1
[1,1,1,1] => [3,1] => 0
[5] => [1,1,1,1,1] => 4
[4,1] => [2,1,1,1] => 3
[3,2] => [5] => 3
[3,1,1] => [4,1] => 2
[2,2,1] => [2,2,1] => 2
[2,1,1,1] => [3,1,1] => 1
[1,1,1,1,1] => [3,2] => 0
[6] => [1,1,1,1,1,1] => 5
[5,1] => [2,1,1,1,1] => 4
[4,2] => [2,2,1,1] => 4
[4,1,1] => [3,1,1,1] => 3
[3,3] => [6] => 4
[3,2,1] => [5,1] => 3
[3,1,1,1] => [3,3] => 2
[2,2,2] => [2,2,2] => 3
[2,2,1,1] => [4,1,1] => 2
[2,1,1,1,1] => [4,2] => 1
[1,1,1,1,1,1] => [3,2,1] => 0
[7] => [1,1,1,1,1,1,1] => 6
[6,1] => [2,1,1,1,1,1] => 5
[5,2] => [2,2,1,1,1] => 5
[5,1,1] => [3,1,1,1,1] => 4
[4,3] => [7] => 5
[4,2,1] => [5,1,1] => 4
[4,1,1,1] => [3,2,1,1] => 3
[3,3,1] => [6,1] => 4
[3,2,2] => [2,2,2,1] => 4
[3,2,1,1] => [5,2] => 3
[3,1,1,1,1] => [3,2,2] => 2
[2,2,2,1] => [4,1,1,1] => 3
[2,2,1,1,1] => [4,3] => 2
[2,1,1,1,1,1] => [3,3,1] => 1
[1,1,1,1,1,1,1] => [4,2,1] => 0
[8] => [1,1,1,1,1,1,1,1] => 7
[7,1] => [2,1,1,1,1,1,1] => 6
[6,2] => [2,2,1,1,1,1] => 6
[6,1,1] => [3,1,1,1,1,1] => 5
[5,3] => [2,2,2,1,1] => 6
[5,2,1] => [4,1,1,1,1] => 5
[5,1,1,1] => [3,2,1,1,1] => 4
[4,4] => [8] => 6
[4,3,1] => [7,1] => 5
[4,2,2] => [6,1,1] => 5
[4,2,1,1] => [4,4] => 4
[4,1,1,1,1] => [5,2,1] => 3
[3,3,2] => [2,2,2,2] => 5
[3,3,1,1] => [6,2] => 4
[3,2,2,1] => [3,2,2,1] => 4
[3,2,1,1,1] => [3,3,1,1] => 3
[3,1,1,1,1,1] => [4,2,1,1] => 2
[2,2,2,2] => [5,1,1,1] => 4
[2,2,2,1,1] => [5,3] => 3
[2,2,1,1,1,1] => [3,3,2] => 2
[2,1,1,1,1,1,1] => [4,2,2] => 1
[1,1,1,1,1,1,1,1] => [4,3,1] => 0
[9] => [1,1,1,1,1,1,1,1,1] => 8
[8,1] => [2,1,1,1,1,1,1,1] => 7
[7,2] => [2,2,1,1,1,1,1] => 7
[7,1,1] => [3,1,1,1,1,1,1] => 6
[6,3] => [2,2,2,1,1,1] => 7
[6,2,1] => [4,1,1,1,1,1] => 6
[6,1,1,1] => [3,2,1,1,1,1] => 5
[5,4] => [9] => 7
[5,3,1] => [3,2,2,1,1] => 6
[5,2,2] => [6,1,1,1] => 6
[5,2,1,1] => [3,3,1,1,1] => 5
[5,1,1,1,1] => [4,2,1,1,1] => 4
[4,4,1] => [8,1] => 6
[4,3,2] => [7,1,1] => 6
[4,3,1,1] => [7,2] => 5
[4,2,2,1] => [6,3] => 5
[4,2,1,1,1] => [6,2,1] => 4
[4,1,1,1,1,1] => [4,4,1] => 3
[3,3,3] => [2,2,2,2,1] => 6
[3,3,2,1] => [3,2,2,2] => 5
[3,3,1,1,1] => [5,2,1,1] => 4
[3,2,2,2] => [5,1,1,1,1] => 5
[3,2,2,1,1] => [3,3,3] => 4
[3,2,1,1,1,1] => [5,2,2] => 3
[3,1,1,1,1,1,1] => [5,3,1] => 2
[2,2,2,2,1] => [5,4] => 4
[2,2,2,1,1,1] => [3,3,2,1] => 3
[2,2,1,1,1,1,1] => [4,2,2,1] => 2
[2,1,1,1,1,1,1,1] => [4,3,1,1] => 1
[1,1,1,1,1,1,1,1,1] => [4,3,2] => 0
[10] => [1,1,1,1,1,1,1,1,1,1] => 9
[9,1] => [2,1,1,1,1,1,1,1,1] => 8
[8,2] => [2,2,1,1,1,1,1,1] => 8
[8,1,1] => [3,1,1,1,1,1,1,1] => 7
[7,3] => [2,2,2,1,1,1,1] => 8
>>> Load all 318 entries. <<<
[7,2,1] => [4,1,1,1,1,1,1] => 7
[7,1,1,1] => [3,2,1,1,1,1,1] => 6
[6,4] => [2,2,2,2,1,1] => 8
[6,3,1] => [3,2,2,1,1,1] => 7
[6,2,2] => [5,1,1,1,1,1] => 7
[6,2,1,1] => [3,3,1,1,1,1] => 6
[6,1,1,1,1] => [4,2,1,1,1,1] => 5
[5,5] => [10] => 8
[5,4,1] => [9,1] => 7
[5,3,2] => [7,1,1,1] => 7
[5,3,1,1] => [6,2,1,1] => 6
[5,2,2,1] => [3,3,2,1,1] => 6
[5,2,1,1,1] => [4,2,2,1,1] => 5
[5,1,1,1,1,1] => [4,3,1,1,1] => 4
[4,4,2] => [8,1,1] => 7
[4,4,1,1] => [8,2] => 6
[4,3,3] => [2,2,2,2,2] => 7
[4,3,2,1] => [7,3] => 6
[4,3,1,1,1] => [7,2,1] => 5
[4,2,2,2] => [5,5] => 6
[4,2,2,1,1] => [3,3,2,2] => 5
[4,2,1,1,1,1] => [6,3,1] => 4
[4,1,1,1,1,1,1] => [4,3,3] => 3
[3,3,3,1] => [3,2,2,2,1] => 6
[3,3,2,2] => [6,1,1,1,1] => 6
[3,3,2,1,1] => [6,2,2] => 5
[3,3,1,1,1,1] => [5,4,1] => 4
[3,2,2,2,1] => [5,2,1,1,1] => 5
[3,2,2,1,1,1] => [4,2,2,2] => 4
[3,2,1,1,1,1,1] => [4,4,1,1] => 3
[3,1,1,1,1,1,1,1] => [4,4,2] => 2
[2,2,2,2,2] => [6,4] => 5
[2,2,2,2,1,1] => [3,3,3,1] => 4
[2,2,2,1,1,1,1] => [5,2,2,1] => 3
[2,2,1,1,1,1,1,1] => [5,3,1,1] => 2
[2,1,1,1,1,1,1,1,1] => [5,3,2] => 1
[1,1,1,1,1,1,1,1,1,1] => [4,3,2,1] => 0
[11] => [1,1,1,1,1,1,1,1,1,1,1] => 10
[10,1] => [2,1,1,1,1,1,1,1,1,1] => 9
[9,2] => [2,2,1,1,1,1,1,1,1] => 9
[9,1,1] => [3,1,1,1,1,1,1,1,1] => 8
[8,3] => [2,2,2,1,1,1,1,1] => 9
[8,2,1] => [4,1,1,1,1,1,1,1] => 8
[8,1,1,1] => [3,2,1,1,1,1,1,1] => 7
[7,4] => [2,2,2,2,1,1,1] => 9
[7,3,1] => [3,2,2,1,1,1,1] => 8
[7,2,2] => [5,1,1,1,1,1,1] => 8
[7,2,1,1] => [3,3,1,1,1,1,1] => 7
[7,1,1,1,1] => [4,2,1,1,1,1,1] => 6
[6,5] => [11] => 9
[6,4,1] => [3,2,2,2,1,1] => 8
[6,3,2] => [7,1,1,1,1] => 8
[6,3,1,1] => [5,2,1,1,1,1] => 7
[6,2,2,1] => [3,3,2,1,1,1] => 7
[6,2,1,1,1] => [4,2,2,1,1,1] => 6
[6,1,1,1,1,1] => [4,3,1,1,1,1] => 5
[5,5,1] => [10,1] => 8
[5,4,2] => [9,1,1] => 8
[5,4,1,1] => [9,2] => 7
[5,3,3] => [8,1,1,1] => 8
[5,3,2,1] => [7,2,1,1] => 7
[5,3,1,1,1] => [5,5,1] => 6
[5,2,2,2] => [7,4] => 7
[5,2,2,1,1] => [6,2,2,1] => 6
[5,2,1,1,1,1] => [6,3,1,1] => 5
[5,1,1,1,1,1,1] => [4,3,2,1,1] => 4
[4,4,3] => [2,2,2,2,2,1] => 8
[4,4,2,1] => [8,3] => 7
[4,4,1,1,1] => [8,2,1] => 6
[4,3,3,1] => [3,2,2,2,2] => 7
[4,3,2,2] => [3,3,2,2,1] => 7
[4,3,2,1,1] => [7,2,2] => 6
[4,3,1,1,1,1] => [7,3,1] => 5
[4,2,2,2,1] => [3,3,3,1,1] => 6
[4,2,2,1,1,1] => [5,2,2,1,1] => 5
[4,2,1,1,1,1,1] => [6,3,2] => 4
[4,1,1,1,1,1,1,1] => [4,3,2,2] => 3
[3,3,3,2] => [6,1,1,1,1,1] => 7
[3,3,3,1,1] => [4,2,2,2,1] => 6
[3,3,2,2,1] => [6,2,1,1,1] => 6
[3,3,2,1,1,1] => [4,4,1,1,1] => 5
[3,3,1,1,1,1,1] => [4,4,3] => 4
[3,2,2,2,2] => [6,5] => 6
[3,2,2,2,1,1] => [6,4,1] => 5
[3,2,2,1,1,1,1] => [5,3,1,1,1] => 4
[3,2,1,1,1,1,1,1] => [5,3,3] => 3
[3,1,1,1,1,1,1,1,1] => [4,3,3,1] => 2
[2,2,2,2,2,1] => [3,3,3,2] => 5
[2,2,2,2,1,1,1] => [5,2,2,2] => 4
[2,2,2,1,1,1,1,1] => [5,4,1,1] => 3
[2,2,1,1,1,1,1,1,1] => [5,4,2] => 2
[2,1,1,1,1,1,1,1,1,1] => [4,4,2,1] => 1
[1,1,1,1,1,1,1,1,1,1,1] => [5,3,2,1] => 0
[12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 11
[11,1] => [2,1,1,1,1,1,1,1,1,1,1] => 10
[10,2] => [2,2,1,1,1,1,1,1,1,1] => 10
[10,1,1] => [3,1,1,1,1,1,1,1,1,1] => 9
[9,3] => [2,2,2,1,1,1,1,1,1] => 10
[9,2,1] => [4,1,1,1,1,1,1,1,1] => 9
[9,1,1,1] => [3,2,1,1,1,1,1,1,1] => 8
[8,4] => [2,2,2,2,1,1,1,1] => 10
[8,3,1] => [3,2,2,1,1,1,1,1] => 9
[8,2,2] => [5,1,1,1,1,1,1,1] => 9
[8,2,1,1] => [3,3,1,1,1,1,1,1] => 8
[8,1,1,1,1] => [4,2,1,1,1,1,1,1] => 7
[7,5] => [2,2,2,2,2,1,1] => 10
[7,4,1] => [3,2,2,2,1,1,1] => 9
[7,3,2] => [6,1,1,1,1,1,1] => 9
[7,3,1,1] => [5,2,1,1,1,1,1] => 8
[7,2,2,1] => [3,3,2,1,1,1,1] => 8
[7,2,1,1,1] => [4,2,2,1,1,1,1] => 7
[7,1,1,1,1,1] => [4,3,1,1,1,1,1] => 6
[6,6] => [12] => 10
[6,5,1] => [11,1] => 9
[6,4,2] => [3,3,2,2,1,1] => 9
[6,4,1,1] => [4,2,2,2,1,1] => 8
[6,3,3] => [8,1,1,1,1] => 9
[6,3,2,1] => [7,2,1,1,1] => 8
[6,3,1,1,1] => [4,4,1,1,1,1] => 7
[6,2,2,2] => [3,3,3,1,1,1] => 8
[6,2,2,1,1] => [5,2,2,1,1,1] => 7
[6,2,1,1,1,1] => [5,3,1,1,1,1] => 6
[6,1,1,1,1,1,1] => [4,3,2,1,1,1] => 5
[5,5,2] => [10,1,1] => 9
[5,5,1,1] => [10,2] => 8
[5,4,3] => [9,1,1,1] => 9
[5,4,2,1] => [9,3] => 8
[5,4,1,1,1] => [9,2,1] => 7
[5,3,3,1] => [8,2,1,1] => 8
[5,3,2,2] => [6,6] => 8
[5,3,2,1,1] => [7,4,1] => 7
[5,3,1,1,1,1] => [4,4,4] => 6
[5,2,2,2,1] => [7,2,2,1] => 7
[5,2,2,1,1,1] => [5,5,1,1] => 6
[5,2,1,1,1,1,1] => [5,5,2] => 5
[5,1,1,1,1,1,1,1] => [6,3,2,1] => 4
[4,4,4] => [2,2,2,2,2,2] => 9
[4,4,3,1] => [3,2,2,2,2,1] => 8
[4,4,2,2] => [8,4] => 8
[4,4,2,1,1] => [8,2,2] => 7
[4,4,1,1,1,1] => [8,3,1] => 6
[4,3,3,2] => [3,3,2,2,2] => 8
[4,3,3,1,1] => [4,2,2,2,2] => 7
[4,3,2,2,1] => [6,2,2,1,1] => 7
[4,3,2,1,1,1] => [6,3,1,1,1] => 6
[4,3,1,1,1,1,1] => [7,3,2] => 5
[4,2,2,2,2] => [3,3,3,3] => 7
[4,2,2,2,1,1] => [6,2,2,2] => 6
[4,2,2,1,1,1,1] => [4,3,3,1,1] => 5
[4,2,1,1,1,1,1,1] => [4,4,2,1,1] => 4
[4,1,1,1,1,1,1,1,1] => [5,3,2,1,1] => 3
[3,3,3,3] => [7,1,1,1,1,1] => 8
[3,3,3,2,1] => [6,2,1,1,1,1] => 7
[3,3,3,1,1,1] => [4,3,2,2,1] => 6
[3,3,2,2,2] => [7,5] => 7
[3,3,2,2,1,1] => [7,3,1,1] => 6
[3,3,2,1,1,1,1] => [6,3,3] => 5
[3,3,1,1,1,1,1,1] => [4,3,3,2] => 4
[3,2,2,2,2,1] => [6,5,1] => 6
[3,2,2,2,1,1,1] => [6,4,1,1] => 5
[3,2,2,1,1,1,1,1] => [6,4,2] => 4
[3,2,1,1,1,1,1,1,1] => [4,4,2,2] => 3
[3,1,1,1,1,1,1,1,1,1] => [5,3,2,2] => 2
[2,2,2,2,2,2] => [3,3,3,2,1] => 6
[2,2,2,2,2,1,1] => [5,2,2,2,1] => 5
[2,2,2,2,1,1,1,1] => [5,4,1,1,1] => 4
[2,2,2,1,1,1,1,1,1] => [5,4,3] => 3
[2,2,1,1,1,1,1,1,1,1] => [4,4,3,1] => 2
[2,1,1,1,1,1,1,1,1,1,1] => [5,3,3,1] => 1
[1,1,1,1,1,1,1,1,1,1,1,1] => [5,4,2,1] => 0
[5,3,3,2] => [8,5] => 9
[5,3,1,1,1,1,1] => [7,4,2] => 6
[5,2,2,1,1,1,1] => [5,4,4] => 6
[5,2,1,1,1,1,1,1] => [4,4,4,1] => 5
[4,3,2,2,2] => [3,3,3,2,2] => 8
[3,3,3,1,1,1,1] => [4,3,3,3] => 6
[3,3,2,2,2,1] => [7,5,1] => 7
[3,3,2,1,1,1,1,1] => [4,4,2,2,1] => 5
[3,3,1,1,1,1,1,1,1] => [5,3,2,2,1] => 4
[3,2,2,2,2,2] => [3,3,3,3,1] => 7
[3,2,2,2,2,1,1] => [4,3,3,2,1] => 6
[3,2,2,2,1,1,1,1] => [5,5,3] => 5
[3,2,2,1,1,1,1,1,1] => [4,4,3,1,1] => 4
[3,2,1,1,1,1,1,1,1,1] => [5,3,3,1,1] => 3
[3,1,1,1,1,1,1,1,1,1,1] => [5,4,2,1,1] => 2
[2,2,2,1,1,1,1,1,1,1] => [4,4,3,2] => 3
[2,2,1,1,1,1,1,1,1,1,1] => [5,3,3,2] => 2
[2,1,1,1,1,1,1,1,1,1,1,1] => [5,4,2,2] => 1
[1,1,1,1,1,1,1,1,1,1,1,1,1] => [5,4,3,1] => 0
[5,4,3,2] => [9,5] => 10
[5,3,3,2,1] => [8,5,1] => 9
[5,2,2,2,1,1,1] => [7,4,3] => 7
[5,2,2,1,1,1,1,1] => [4,4,3,3] => 6
[4,3,2,2,1,1,1] => [5,5,4] => 7
[4,2,2,1,1,1,1,1,1] => [4,4,4,2] => 5
[3,3,2,2,2,2] => [3,3,3,3,2] => 8
[3,3,2,2,2,1,1] => [7,5,2] => 7
[3,3,2,2,1,1,1,1] => [5,3,2,2,2] => 6
[2,2,2,2,1,1,1,1,1,1] => [4,4,3,2,1] => 4
[2,2,2,1,1,1,1,1,1,1,1] => [5,3,3,2,1] => 3
[2,2,1,1,1,1,1,1,1,1,1,1] => [5,4,2,2,1] => 2
[2,1,1,1,1,1,1,1,1,1,1,1,1] => [5,4,3,1,1] => 1
[1,1,1,1,1,1,1,1,1,1,1,1,1,1] => [5,4,3,2] => 0
[6,3,2,2,1,1] => [5,5,5] => 9
[5,4,3,2,1] => [9,5,1] => 10
[5,3,3,2,2] => [3,3,3,3,3] => 10
[5,3,3,2,1,1] => [8,5,2] => 9
[4,4,3,1,1,1,1] => [5,3,2,2,2,1] => 8
[4,3,2,2,1,1,1,1] => [4,4,4,3] => 7
[4,2,2,2,2,1,1,1] => [7,5,3] => 7
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => [5,4,3,2,1] => 0
[4,3,3,2,2,1,1] => [8,5,3] => 9
[4,3,2,2,2,2,1] => [4,4,4,4] => 9
[4,3,2,1,1,1,1,1,1,1] => [7,5,3,1] => 6
[4,3,3,2,2,2,1] => [8,6,3] => 10
[] => [] => 0
[6,5,4,3,2,1] => [11,7,3] => 15
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The dinv defect of an integer partition.
This is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \not\in \{0,1\}$.
Map
Loehr-Warrington
Description
Return a partition whose diagonal inversion number is the length of the preimage.