*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000377

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The dinv defect of an integer partition.

This is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \not\in \{0,1\}$.

-----------------------------------------------------------------------------
References: [1]   Lee, K., Li, L., Loehr, N. A. A Combinatorial Approach to the Symmetry of $q,t$-Catalan Numbers [[arXiv:1602.01126]]

-----------------------------------------------------------------------------
Code:
def statistic(P):
    return sum( 1 for c in P.cells() if P.arm_length(*c)-P.leg_length(*c) not in [0,1] )


-----------------------------------------------------------------------------
Statistic values:

[]                        => 0
[1]                       => 0
[2]                       => 0
[1,1]                     => 1
[3]                       => 1
[2,1]                     => 0
[1,1,1]                   => 2
[4]                       => 2
[3,1]                     => 0
[2,2]                     => 1
[2,1,1]                   => 2
[1,1,1,1]                 => 3
[5]                       => 3
[4,1]                     => 2
[3,2]                     => 0
[3,1,1]                   => 1
[2,2,1]                   => 2
[2,1,1,1]                 => 3
[1,1,1,1,1]               => 4
[6]                       => 4
[5,1]                     => 3
[4,2]                     => 1
[4,1,1]                   => 2
[3,3]                     => 2
[3,2,1]                   => 0
[3,1,1,1]                 => 3
[2,2,2]                   => 3
[2,2,1,1]                 => 4
[2,1,1,1,1]               => 4
[1,1,1,1,1,1]             => 5
[7]                       => 5
[6,1]                     => 4
[5,2]                     => 3
[5,1,1]                   => 4
[4,3]                     => 2
[4,2,1]                   => 0
[4,1,1,1]                 => 3
[3,3,1]                   => 1
[3,2,2]                   => 2
[3,2,1,1]                 => 3
[3,1,1,1,1]               => 4
[2,2,2,1]                 => 4
[2,2,1,1,1]               => 5
[2,1,1,1,1,1]             => 5
[1,1,1,1,1,1,1]           => 6
[8]                       => 6
[7,1]                     => 5
[6,2]                     => 4
[6,1,1]                   => 5
[5,3]                     => 3
[5,2,1]                   => 3
[5,1,1,1]                 => 4
[4,4]                     => 4
[4,3,1]                   => 0
[4,2,2]                   => 1
[4,2,1,1]                 => 2
[4,1,1,1,1]               => 5
[3,3,2]                   => 2
[3,3,1,1]                 => 3
[3,2,2,1]                 => 4
[3,2,1,1,1]               => 4
[3,1,1,1,1,1]             => 5
[2,2,2,2]                 => 5
[2,2,2,1,1]               => 6
[2,2,1,1,1,1]             => 6
[2,1,1,1,1,1,1]           => 6
[1,1,1,1,1,1,1,1]         => 7
[9]                       => 7
[8,1]                     => 6
[7,2]                     => 5
[7,1,1]                   => 6
[6,3]                     => 5
[6,2,1]                   => 4
[6,1,1,1]                 => 6
[5,4]                     => 4
[5,3,1]                   => 2
[5,2,2]                   => 3
[5,2,1,1]                 => 4
[5,1,1,1,1]               => 5
[4,4,1]                   => 3
[4,3,2]                   => 0
[4,3,1,1]                 => 1
[4,2,2,1]                 => 2
[4,2,1,1,1]               => 4
[4,1,1,1,1,1]             => 6
[3,3,3]                   => 4
[3,3,2,1]                 => 3
[3,3,1,1,1]               => 5
[3,2,2,2]                 => 5
[3,2,2,1,1]               => 6
[3,2,1,1,1,1]             => 5
[3,1,1,1,1,1,1]           => 6
[2,2,2,2,1]               => 6
[2,2,2,1,1,1]             => 7
[2,2,1,1,1,1,1]           => 7
[2,1,1,1,1,1,1,1]         => 7
[1,1,1,1,1,1,1,1,1]       => 8
[10]                      => 8
[9,1]                     => 7
[8,2]                     => 6
[8,1,1]                   => 7
[7,3]                     => 6
[7,2,1]                   => 5
[7,1,1,1]                 => 7
[6,4]                     => 5
[6,3,1]                   => 4
[6,2,2]                   => 5
[6,2,1,1]                 => 6
[6,1,1,1,1]               => 6
[5,5]                     => 6
[5,4,1]                   => 4
[5,3,2]                   => 1
[5,3,1,1]                 => 2
[5,2,2,1]                 => 3
[5,2,1,1,1]               => 5
[5,1,1,1,1,1]             => 7
[4,4,2]                   => 2
[4,4,1,1]                 => 3
[4,3,3]                   => 3
[4,3,2,1]                 => 0
[4,3,1,1,1]               => 4
[4,2,2,2]                 => 4
[4,2,2,1,1]               => 5
[4,2,1,1,1,1]             => 5
[4,1,1,1,1,1,1]           => 7
[3,3,3,1]                 => 4
[3,3,2,2]                 => 5
[3,3,2,1,1]               => 6
[3,3,1,1,1,1]             => 6
[3,2,2,2,1]               => 6
[3,2,2,1,1,1]             => 7
[3,2,1,1,1,1,1]           => 6
[3,1,1,1,1,1,1,1]         => 7
[2,2,2,2,2]               => 7
[2,2,2,2,1,1]             => 8
[2,2,2,1,1,1,1]           => 8
[2,2,1,1,1,1,1,1]         => 8
[2,1,1,1,1,1,1,1,1]       => 8
[1,1,1,1,1,1,1,1,1,1]     => 9
[11]                      => 9
[10,1]                    => 8
[9,2]                     => 7
[9,1,1]                   => 8
[8,3]                     => 7
[8,2,1]                   => 6
[8,1,1,1]                 => 8
[7,4]                     => 7
[7,3,1]                   => 5
[7,2,2]                   => 6
[7,2,1,1]                 => 7
[7,1,1,1,1]               => 8
[6,5]                     => 6
[6,4,1]                   => 5
[6,3,2]                   => 4
[6,3,1,1]                 => 5
[6,2,2,1]                 => 6
[6,2,1,1,1]               => 6
[6,1,1,1,1,1]             => 7
[5,5,1]                   => 6
[5,4,2]                   => 2
[5,4,1,1]                 => 3
[5,3,3]                   => 3
[5,3,2,1]                 => 0
[5,3,1,1,1]               => 4
[5,2,2,2]                 => 4
[5,2,2,1,1]               => 5
[5,2,1,1,1,1]             => 7
[5,1,1,1,1,1,1]           => 8
[4,4,3]                   => 4
[4,4,2,1]                 => 1
[4,4,1,1,1]               => 5
[4,3,3,1]                 => 2
[4,3,2,2]                 => 3
[4,3,2,1,1]               => 4
[4,3,1,1,1,1]             => 5
[4,2,2,2,1]               => 6
[4,2,2,1,1,1]             => 6
[4,2,1,1,1,1,1]           => 6
[4,1,1,1,1,1,1,1]         => 8
[3,3,3,2]                 => 5
[3,3,3,1,1]               => 6
[3,3,2,2,1]               => 7
[3,3,2,1,1,1]             => 7
[3,3,1,1,1,1,1]           => 7
[3,2,2,2,2]               => 7
[3,2,2,2,1,1]             => 8
[3,2,2,1,1,1,1]           => 8
[3,2,1,1,1,1,1,1]         => 7
[3,1,1,1,1,1,1,1,1]       => 8
[2,2,2,2,2,1]             => 8
[2,2,2,2,1,1,1]           => 9
[2,2,2,1,1,1,1,1]         => 9
[2,2,1,1,1,1,1,1,1]       => 9
[2,1,1,1,1,1,1,1,1,1]     => 9
[1,1,1,1,1,1,1,1,1,1,1]   => 10
[12]                      => 10
[11,1]                    => 9
[10,2]                    => 8
[10,1,1]                  => 9
[9,3]                     => 8
[9,2,1]                   => 7
[9,1,1,1]                 => 9
[8,4]                     => 8
[8,3,1]                   => 6
[8,2,2]                   => 7
[8,2,1,1]                 => 8
[8,1,1,1,1]               => 9
[7,5]                     => 7
[7,4,1]                   => 7
[7,3,2]                   => 5
[7,3,1,1]                 => 6
[7,2,2,1]                 => 7
[7,2,1,1,1]               => 8
[7,1,1,1,1,1]             => 8
[6,6]                     => 8
[6,5,1]                   => 6
[6,4,2]                   => 4
[6,4,1,1]                 => 5
[6,3,3]                   => 5
[6,3,2,1]                 => 4
[6,3,1,1,1]               => 6
[6,2,2,2]                 => 6
[6,2,2,1,1]               => 7
[6,2,1,1,1,1]             => 7
[6,1,1,1,1,1,1]           => 9
[5,5,2]                   => 5
[5,5,1,1]                 => 6
[5,4,3]                   => 3
[5,4,2,1]                 => 0
[5,4,1,1,1]               => 4
[5,3,3,1]                 => 1
[5,3,2,2]                 => 2
[5,3,2,1,1]               => 3
[5,3,1,1,1,1]             => 6
[5,2,2,2,1]               => 5
[5,2,2,1,1,1]             => 7
[5,2,1,1,1,1,1]           => 8
[5,1,1,1,1,1,1,1]         => 9
[4,4,4]                   => 6
[4,4,3,1]                 => 2
[4,4,2,2]                 => 3
[4,4,2,1,1]               => 4
[4,4,1,1,1,1]             => 7
[4,3,3,2]                 => 4
[4,3,3,1,1]               => 5
[4,3,2,2,1]               => 6
[4,3,2,1,1,1]             => 5
[4,3,1,1,1,1,1]           => 6
[4,2,2,2,2]               => 7
[4,2,2,2,1,1]             => 8
[4,2,2,1,1,1,1]           => 7
[4,2,1,1,1,1,1,1]         => 7
[4,1,1,1,1,1,1,1,1]       => 9
[3,3,3,3]                 => 7
[3,3,3,2,1]               => 6
[3,3,3,1,1,1]             => 8
[3,3,2,2,2]               => 8
[3,3,2,2,1,1]             => 9
[3,3,2,1,1,1,1]           => 8
[3,3,1,1,1,1,1,1]         => 8
[3,2,2,2,2,1]             => 8
[3,2,2,2,1,1,1]           => 9
[3,2,2,1,1,1,1,1]         => 9
[3,2,1,1,1,1,1,1,1]       => 8
[3,1,1,1,1,1,1,1,1,1]     => 9
[2,2,2,2,2,2]             => 9
[2,2,2,2,2,1,1]           => 10
[2,2,2,2,1,1,1,1]         => 10
[2,2,2,1,1,1,1,1,1]       => 10
[2,2,1,1,1,1,1,1,1,1]     => 10
[2,1,1,1,1,1,1,1,1,1,1]   => 10
[1,1,1,1,1,1,1,1,1,1,1,1] => 11
[8,5]                     => 9
[7,5,1]                   => 7
[7,4,2]                   => 6
[5,5,3]                   => 5
[5,4,4]                   => 6
[5,4,3,1]                 => 0
[5,4,2,2]                 => 1
[5,4,2,1,1]               => 2
[5,3,3,2]                 => 2
[5,3,3,1,1]               => 3
[5,3,2,2,1]               => 4
[4,4,4,1]                 => 5
[4,4,3,2]                 => 3
[4,4,3,1,1]               => 4
[4,4,2,2,1]               => 5
[4,3,3,3]                 => 6
[4,3,3,2,1]               => 6
[3,3,3,3,1]               => 7
[3,3,3,2,2]               => 8
[9,5]                     => 10
[8,5,1]                   => 9
[7,5,2]                   => 7
[7,4,3]                   => 7
[5,5,4]                   => 7
[5,4,3,2]                 => 0
[5,4,3,1,1]               => 1
[5,4,2,2,1]               => 2
[5,3,3,2,1]               => 3
[5,3,2,2,2]               => 6
[4,4,4,2]                 => 5
[4,4,3,3]                 => 6
[4,4,3,2,1]               => 4
[3,3,3,3,2]               => 8
[9,5,1]                   => 10
[8,5,2]                   => 9
[7,5,3]                   => 7
[5,5,5]                   => 9
[5,4,3,2,1]               => 0
[5,3,2,2,2,1]             => 8
[4,4,4,3]                 => 7
[3,3,3,3,3]               => 10
[8,5,3]                   => 9
[7,5,3,1]                 => 6
[4,4,4,4]                 => 9
[8,6,3]                   => 10
[9,6,3]                   => 12
[8,6,4]                   => 10
[9,6,4]                   => 12
[8,5,4,2]                 => 8
[8,5,5,1]                 => 11
[7,5,4,3,1]               => 2
[8,6,4,2]                 => 9
[10,6,4]                  => 13
[10,7,3]                  => 14
[9,7,4]                   => 13
[9,5,5,1]                 => 13
[6,5,4,3,2,1]             => 0
[11,7,3]                  => 15
[9,6,4,3]                 => 11
[9,6,5,3]                 => 12
[8,6,5,3,1]               => 8
[11,7,5,1]                => 16
[9,7,5,3]                 => 13
[9,7,5,3,1]               => 12
[10,7,5,3]                => 15
[9,7,5,4,1]               => 13
[7,6,5,4,3,2,1]           => 0
[10,7,6,4,1]              => 16
[9,7,6,4,2]               => 12
[10,8,5,4,1]              => 17
[10,8,6,4,1]              => 17
[9,7,5,5,3,1]             => 10
[11,8,6,4,1]              => 19
[10,8,6,4,2]              => 16
[11,8,6,5,1]              => 19
[12,9,7,5,1]              => 23
[13,9,7,5,1]              => 24
[11,9,7,5,3,1]            => 20
[11,8,7,5,4,1]            => 19
[8,7,6,5,4,3,2,1]         => 0
[11,9,7,5,5,3]            => 20
[11,9,7,7,5,3,3]          => 18
[11,9,7,6,5,3,1]          => 18
[13,11,9,7,5,3,1]         => 30
[13,11,9,7,7,5,3,1]       => 30
[17,13,11,9,7,5,1]        => 46
[15,13,11,9,7,5,3,1]      => 42
[29,23,19,17,13,11,7,1]   => 103

-----------------------------------------------------------------------------
Created: Feb 06, 2016 at 17:12 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Feb 25, 2021 at 20:14 by Martin Rubey