Identifier
-
Mp00146:
Dyck paths
—to tunnel matching⟶
Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000366: Permutations ⟶ ℤ
Values
[1,0] => [(1,2)] => [2,1] => [1,2] => 0
[1,0,1,0] => [(1,2),(3,4)] => [2,1,4,3] => [3,4,1,2] => 0
[1,1,0,0] => [(1,4),(2,3)] => [3,4,2,1] => [2,1,3,4] => 0
[1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [5,6,3,4,1,2] => 0
[1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [2,1,5,6,4,3] => [5,6,2,1,3,4] => 1
[1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [3,4,2,1,6,5] => [4,3,5,6,1,2] => 0
[1,1,0,1,0,0] => [(1,6),(2,3),(4,5)] => [3,5,2,6,4,1] => [4,2,5,1,3,6] => 0
[1,1,1,0,0,0] => [(1,6),(2,5),(3,4)] => [4,5,6,3,2,1] => [3,2,1,4,5,6] => 1
[1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [7,8,5,6,3,4,1,2] => 0
[1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => [3,4,2,1,7,8,6,5] => [6,5,7,8,2,1,3,4] => 1
[1,1,0,1,0,1,0,0] => [(1,8),(2,3),(4,5),(6,7)] => [3,5,2,7,4,8,6,1] => [6,4,7,2,5,1,3,8] => 0
[1,1,1,0,1,0,0,0] => [(1,8),(2,7),(3,4),(5,6)] => [4,6,7,3,8,5,2,1] => [5,3,2,6,1,4,7,8] => 1
[1,1,1,1,0,0,0,0] => [(1,8),(2,7),(3,6),(4,5)] => [5,6,7,8,4,3,2,1] => [4,3,2,1,5,6,7,8] => 2
[1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [9,10,7,8,5,6,3,4,1,2] => 0
[1,1,0,1,0,1,0,1,0,0] => [(1,10),(2,3),(4,5),(6,7),(8,9)] => [3,5,2,7,4,9,6,10,8,1] => [8,6,9,4,7,2,5,1,3,10] => 0
[1,1,1,0,1,0,1,0,0,0] => [(1,10),(2,9),(3,4),(5,6),(7,8)] => [4,6,8,3,9,5,10,7,2,1] => [7,5,3,8,2,6,1,4,9,10] => 1
[1,1,1,1,0,1,0,0,0,0] => [(1,10),(2,9),(3,8),(4,5),(6,7)] => [5,7,8,9,4,10,6,3,2,1] => [6,4,3,2,7,1,5,8,9,10] => 2
[1,1,1,1,1,0,0,0,0,0] => [(1,10),(2,9),(3,8),(4,7),(5,6)] => [6,7,8,9,10,5,4,3,2,1] => [5,4,3,2,1,6,7,8,9,10] => 3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of double descents of a permutation.
A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
Map
complement
Description
Sents a permutation to its complement.
The complement of a permutation $\sigma$ of length $n$ is the permutation $\tau$ with $\tau(i) = n+1-\sigma(i)$
The complement of a permutation $\sigma$ of length $n$ is the permutation $\tau$ with $\tau(i) = n+1-\sigma(i)$
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!