Identifier
-
Mp00058:
Perfect matchings
—to permutation⟶
Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000359: Permutations ⟶ ℤ
Values
[(1,2)] => [2,1] => [2,1] => 0
[(1,2),(3,4)] => [2,1,4,3] => [2,1,4,3] => 0
[(1,3),(2,4)] => [3,4,1,2] => [3,1,4,2] => 0
[(1,4),(2,3)] => [4,3,2,1] => [3,2,4,1] => 1
[(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [2,1,4,3,6,5] => 0
[(1,3),(2,4),(5,6)] => [3,4,1,2,6,5] => [3,1,4,2,6,5] => 0
[(1,4),(2,3),(5,6)] => [4,3,2,1,6,5] => [3,2,4,1,6,5] => 1
[(1,5),(2,3),(4,6)] => [5,3,2,6,1,4] => [3,2,5,1,6,4] => 1
[(1,6),(2,3),(4,5)] => [6,3,2,5,4,1] => [3,2,5,4,6,1] => 2
[(1,6),(2,4),(3,5)] => [6,4,5,2,3,1] => [4,2,5,3,6,1] => 2
[(1,5),(2,4),(3,6)] => [5,4,6,2,1,3] => [4,2,5,1,6,3] => 1
[(1,4),(2,5),(3,6)] => [4,5,6,1,2,3] => [4,1,5,2,6,3] => 0
[(1,3),(2,5),(4,6)] => [3,5,1,6,2,4] => [3,1,5,2,6,4] => 0
[(1,2),(3,5),(4,6)] => [2,1,5,6,3,4] => [2,1,5,3,6,4] => 0
[(1,2),(3,6),(4,5)] => [2,1,6,5,4,3] => [2,1,5,4,6,3] => 1
[(1,3),(2,6),(4,5)] => [3,6,1,5,4,2] => [3,1,5,4,6,2] => 1
[(1,4),(2,6),(3,5)] => [4,6,5,1,3,2] => [4,1,5,3,6,2] => 1
[(1,5),(2,6),(3,4)] => [5,6,4,3,1,2] => [4,3,5,1,6,2] => 2
[(1,6),(2,5),(3,4)] => [6,5,4,3,2,1] => [4,3,5,2,6,1] => 3
[(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 0
[(1,3),(2,4),(5,6),(7,8)] => [3,4,1,2,6,5,8,7] => [3,1,4,2,6,5,8,7] => 0
[(1,4),(2,3),(5,6),(7,8)] => [4,3,2,1,6,5,8,7] => [3,2,4,1,6,5,8,7] => 1
[(1,5),(2,3),(4,6),(7,8)] => [5,3,2,6,1,4,8,7] => [3,2,5,1,6,4,8,7] => 1
[(1,6),(2,3),(4,5),(7,8)] => [6,3,2,5,4,1,8,7] => [3,2,5,4,6,1,8,7] => 2
[(1,7),(2,3),(4,5),(6,8)] => [7,3,2,5,4,8,1,6] => [3,2,5,4,7,1,8,6] => 2
[(1,8),(2,3),(4,5),(6,7)] => [8,3,2,5,4,7,6,1] => [3,2,5,4,7,6,8,1] => 3
[(1,8),(2,4),(3,5),(6,7)] => [8,4,5,2,3,7,6,1] => [4,2,5,3,7,6,8,1] => 3
[(1,7),(2,4),(3,5),(6,8)] => [7,4,5,2,3,8,1,6] => [4,2,5,3,7,1,8,6] => 2
[(1,6),(2,4),(3,5),(7,8)] => [6,4,5,2,3,1,8,7] => [4,2,5,3,6,1,8,7] => 2
[(1,5),(2,4),(3,6),(7,8)] => [5,4,6,2,1,3,8,7] => [4,2,5,1,6,3,8,7] => 1
[(1,4),(2,5),(3,6),(7,8)] => [4,5,6,1,2,3,8,7] => [4,1,5,2,6,3,8,7] => 0
[(1,3),(2,5),(4,6),(7,8)] => [3,5,1,6,2,4,8,7] => [3,1,5,2,6,4,8,7] => 0
[(1,2),(3,5),(4,6),(7,8)] => [2,1,5,6,3,4,8,7] => [2,1,5,3,6,4,8,7] => 0
[(1,2),(3,6),(4,5),(7,8)] => [2,1,6,5,4,3,8,7] => [2,1,5,4,6,3,8,7] => 1
[(1,3),(2,6),(4,5),(7,8)] => [3,6,1,5,4,2,8,7] => [3,1,5,4,6,2,8,7] => 1
[(1,4),(2,6),(3,5),(7,8)] => [4,6,5,1,3,2,8,7] => [4,1,5,3,6,2,8,7] => 1
[(1,5),(2,6),(3,4),(7,8)] => [5,6,4,3,1,2,8,7] => [4,3,5,1,6,2,8,7] => 2
[(1,6),(2,5),(3,4),(7,8)] => [6,5,4,3,2,1,8,7] => [4,3,5,2,6,1,8,7] => 3
[(1,7),(2,5),(3,4),(6,8)] => [7,5,4,3,2,8,1,6] => [4,3,5,2,7,1,8,6] => 3
[(1,8),(2,5),(3,4),(6,7)] => [8,5,4,3,2,7,6,1] => [4,3,5,2,7,6,8,1] => 4
[(1,8),(2,6),(3,4),(5,7)] => [8,6,4,3,7,2,5,1] => [4,3,6,2,7,5,8,1] => 4
[(1,7),(2,6),(3,4),(5,8)] => [7,6,4,3,8,2,1,5] => [4,3,6,2,7,1,8,5] => 3
[(1,6),(2,7),(3,4),(5,8)] => [6,7,4,3,8,1,2,5] => [4,3,6,1,7,2,8,5] => 2
[(1,5),(2,7),(3,4),(6,8)] => [5,7,4,3,1,8,2,6] => [4,3,5,1,7,2,8,6] => 2
[(1,4),(2,7),(3,5),(6,8)] => [4,7,5,1,3,8,2,6] => [4,1,5,3,7,2,8,6] => 1
[(1,3),(2,7),(4,5),(6,8)] => [3,7,1,5,4,8,2,6] => [3,1,5,4,7,2,8,6] => 1
[(1,2),(3,7),(4,5),(6,8)] => [2,1,7,5,4,8,3,6] => [2,1,5,4,7,3,8,6] => 1
[(1,2),(3,8),(4,5),(6,7)] => [2,1,8,5,4,7,6,3] => [2,1,5,4,7,6,8,3] => 2
[(1,3),(2,8),(4,5),(6,7)] => [3,8,1,5,4,7,6,2] => [3,1,5,4,7,6,8,2] => 2
[(1,4),(2,8),(3,5),(6,7)] => [4,8,5,1,3,7,6,2] => [4,1,5,3,7,6,8,2] => 2
[(1,5),(2,8),(3,4),(6,7)] => [5,8,4,3,1,7,6,2] => [4,3,5,1,7,6,8,2] => 3
[(1,6),(2,8),(3,4),(5,7)] => [6,8,4,3,7,1,5,2] => [4,3,6,1,7,5,8,2] => 3
[(1,7),(2,8),(3,4),(5,6)] => [7,8,4,3,6,5,1,2] => [4,3,6,5,7,1,8,2] => 4
[(1,8),(2,7),(3,4),(5,6)] => [8,7,4,3,6,5,2,1] => [4,3,6,5,7,2,8,1] => 5
[(1,8),(2,7),(3,5),(4,6)] => [8,7,5,6,3,4,2,1] => [5,3,6,4,7,2,8,1] => 5
[(1,7),(2,8),(3,5),(4,6)] => [7,8,5,6,3,4,1,2] => [5,3,6,4,7,1,8,2] => 4
[(1,6),(2,8),(3,5),(4,7)] => [6,8,5,7,3,1,4,2] => [5,3,6,1,7,4,8,2] => 3
[(1,5),(2,8),(3,6),(4,7)] => [5,8,6,7,1,3,4,2] => [5,1,6,3,7,4,8,2] => 2
[(1,4),(2,8),(3,6),(5,7)] => [4,8,6,1,7,3,5,2] => [4,1,6,3,7,5,8,2] => 2
[(1,3),(2,8),(4,6),(5,7)] => [3,8,1,6,7,4,5,2] => [3,1,6,4,7,5,8,2] => 2
[(1,2),(3,8),(4,6),(5,7)] => [2,1,8,6,7,4,5,3] => [2,1,6,4,7,5,8,3] => 2
[(1,2),(3,7),(4,6),(5,8)] => [2,1,7,6,8,4,3,5] => [2,1,6,4,7,3,8,5] => 1
[(1,3),(2,7),(4,6),(5,8)] => [3,7,1,6,8,4,2,5] => [3,1,6,4,7,2,8,5] => 1
[(1,4),(2,7),(3,6),(5,8)] => [4,7,6,1,8,3,2,5] => [4,1,6,3,7,2,8,5] => 1
[(1,5),(2,7),(3,6),(4,8)] => [5,7,6,8,1,3,2,4] => [5,1,6,3,7,2,8,4] => 1
[(1,6),(2,7),(3,5),(4,8)] => [6,7,5,8,3,1,2,4] => [5,3,6,1,7,2,8,4] => 2
[(1,7),(2,6),(3,5),(4,8)] => [7,6,5,8,3,2,1,4] => [5,3,6,2,7,1,8,4] => 3
[(1,8),(2,6),(3,5),(4,7)] => [8,6,5,7,3,2,4,1] => [5,3,6,2,7,4,8,1] => 4
[(1,8),(2,5),(3,6),(4,7)] => [8,5,6,7,2,3,4,1] => [5,2,6,3,7,4,8,1] => 3
[(1,7),(2,5),(3,6),(4,8)] => [7,5,6,8,2,3,1,4] => [5,2,6,3,7,1,8,4] => 2
[(1,6),(2,5),(3,7),(4,8)] => [6,5,7,8,2,1,3,4] => [5,2,6,1,7,3,8,4] => 1
[(1,5),(2,6),(3,7),(4,8)] => [5,6,7,8,1,2,3,4] => [5,1,6,2,7,3,8,4] => 0
[(1,4),(2,6),(3,7),(5,8)] => [4,6,7,1,8,2,3,5] => [4,1,6,2,7,3,8,5] => 0
[(1,3),(2,6),(4,7),(5,8)] => [3,6,1,7,8,2,4,5] => [3,1,6,2,7,4,8,5] => 0
[(1,2),(3,6),(4,7),(5,8)] => [2,1,6,7,8,3,4,5] => [2,1,6,3,7,4,8,5] => 0
[(1,2),(3,5),(4,7),(6,8)] => [2,1,5,7,3,8,4,6] => [2,1,5,3,7,4,8,6] => 0
[(1,3),(2,5),(4,7),(6,8)] => [3,5,1,7,2,8,4,6] => [3,1,5,2,7,4,8,6] => 0
[(1,4),(2,5),(3,7),(6,8)] => [4,5,7,1,2,8,3,6] => [4,1,5,2,7,3,8,6] => 0
[(1,5),(2,4),(3,7),(6,8)] => [5,4,7,2,1,8,3,6] => [4,2,5,1,7,3,8,6] => 1
[(1,6),(2,4),(3,7),(5,8)] => [6,4,7,2,8,1,3,5] => [4,2,6,1,7,3,8,5] => 1
[(1,7),(2,4),(3,6),(5,8)] => [7,4,6,2,8,3,1,5] => [4,2,6,3,7,1,8,5] => 2
[(1,8),(2,4),(3,6),(5,7)] => [8,4,6,2,7,3,5,1] => [4,2,6,3,7,5,8,1] => 3
[(1,8),(2,3),(4,6),(5,7)] => [8,3,2,6,7,4,5,1] => [3,2,6,4,7,5,8,1] => 3
[(1,7),(2,3),(4,6),(5,8)] => [7,3,2,6,8,4,1,5] => [3,2,6,4,7,1,8,5] => 2
[(1,6),(2,3),(4,7),(5,8)] => [6,3,2,7,8,1,4,5] => [3,2,6,1,7,4,8,5] => 1
[(1,5),(2,3),(4,7),(6,8)] => [5,3,2,7,1,8,4,6] => [3,2,5,1,7,4,8,6] => 1
[(1,4),(2,3),(5,7),(6,8)] => [4,3,2,1,7,8,5,6] => [3,2,4,1,7,5,8,6] => 1
[(1,3),(2,4),(5,7),(6,8)] => [3,4,1,2,7,8,5,6] => [3,1,4,2,7,5,8,6] => 0
[(1,2),(3,4),(5,7),(6,8)] => [2,1,4,3,7,8,5,6] => [2,1,4,3,7,5,8,6] => 0
[(1,2),(3,4),(5,8),(6,7)] => [2,1,4,3,8,7,6,5] => [2,1,4,3,7,6,8,5] => 1
[(1,3),(2,4),(5,8),(6,7)] => [3,4,1,2,8,7,6,5] => [3,1,4,2,7,6,8,5] => 1
[(1,4),(2,3),(5,8),(6,7)] => [4,3,2,1,8,7,6,5] => [3,2,4,1,7,6,8,5] => 2
[(1,5),(2,3),(4,8),(6,7)] => [5,3,2,8,1,7,6,4] => [3,2,5,1,7,6,8,4] => 2
[(1,6),(2,3),(4,8),(5,7)] => [6,3,2,8,7,1,5,4] => [3,2,6,1,7,5,8,4] => 2
[(1,7),(2,3),(4,8),(5,6)] => [7,3,2,8,6,5,1,4] => [3,2,6,5,7,1,8,4] => 3
[(1,8),(2,3),(4,7),(5,6)] => [8,3,2,7,6,5,4,1] => [3,2,6,5,7,4,8,1] => 4
[(1,8),(2,4),(3,7),(5,6)] => [8,4,7,2,6,5,3,1] => [4,2,6,5,7,3,8,1] => 4
[(1,7),(2,4),(3,8),(5,6)] => [7,4,8,2,6,5,1,3] => [4,2,6,5,7,1,8,3] => 3
[(1,6),(2,4),(3,8),(5,7)] => [6,4,8,2,7,1,5,3] => [4,2,6,1,7,5,8,3] => 2
[(1,5),(2,4),(3,8),(6,7)] => [5,4,8,2,1,7,6,3] => [4,2,5,1,7,6,8,3] => 2
[(1,4),(2,5),(3,8),(6,7)] => [4,5,8,1,2,7,6,3] => [4,1,5,2,7,6,8,3] => 1
>>> Load all 126 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of occurrences of the pattern 23-1.
See Permutations/#Pattern-avoiding_permutations for the definition of the pattern $23\!\!-\!\!1$.
See Permutations/#Pattern-avoiding_permutations for the definition of the pattern $23\!\!-\!\!1$.
Map
inverse first fundamental transformation
Description
Let $\sigma = (i_{11}\cdots i_{1k_1})\cdots(i_{\ell 1}\cdots i_{\ell k_\ell})$ be a permutation given by cycle notation such that every cycle starts with its maximal entry, and all cycles are ordered increasingly by these maximal entries.
Maps $\sigma$ to the permutation $[i_{11},\ldots,i_{1k_1},\ldots,i_{\ell 1},\ldots,i_{\ell k_\ell}]$ in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.
Maps $\sigma$ to the permutation $[i_{11},\ldots,i_{1k_1},\ldots,i_{\ell 1},\ldots,i_{\ell k_\ell}]$ in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!