Identifier
-
Mp00178:
Binary words
—to composition⟶
Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000340: Dyck paths ⟶ ℤ
Values
0 => [2] => [1,1,0,0] => [1,0,1,0] => 0
1 => [1,1] => [1,0,1,0] => [1,1,0,0] => 1
00 => [3] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 0
01 => [2,1] => [1,1,0,0,1,0] => [1,1,0,1,0,0] => 1
10 => [1,2] => [1,0,1,1,0,0] => [1,0,1,1,0,0] => 1
11 => [1,1,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 1
000 => [4] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,0,0] => 1
010 => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => 1
100 => [1,3] => [1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,0,0,0] => 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 2
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => 2
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 1
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => 2
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => 2
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 2
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => 2
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 2
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => 3
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 1
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 2
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 2
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 1
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 1
000000 => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => 0
000001 => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => 1
000010 => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => 1
000011 => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0] => 1
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => 1
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => [1,0,1,1,0,1,1,0,1,0,1,0,0,0] => 2
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,1,1,0,1,0,0,0] => 2
000111 => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0] => 1
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,1,0,0] => 1
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => 2
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => 1
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => 2
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => 2
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => 3
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => 2
001111 => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,1,1,1,0,1,0,0,0,0,0] => 1
010000 => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => 1
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,1,0,1,0,1,0,0,0] => 1
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => 2
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,1,0,1,0,1,0,0,0,0] => 1
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,1,0,1,0,1,0,1,0,0,0] => 1
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => 1
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,1,0,1,0,1,0,0,0,0] => 2
010111 => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => 1
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0] => 2
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,1,1,0,1,0,0,0,0] => 2
011010 => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,1,0,1,0,0,0,0] => 2
011011 => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,1,1,0,1,0,0,0,0,0] => 2
011100 => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,1,1,0,1,0,0,0,0] => 2
011101 => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,1,1,1,0,1,0,0,0,0,0] => 2
011110 => [2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,1,1,0,1,0,0,0,0,0] => 2
011111 => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => 1
100000 => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => 1
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0] => 2
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,1,1,0,0,0] => 2
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0] => 2
100100 => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => 2
100101 => [1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => 3
100110 => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => 3
>>> Load all 191 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of non-final maximal constant sub-paths of length greater than one.
This is the total number of occurrences of the patterns 110 and 001.
This is the total number of occurrences of the patterns 110 and 001.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map ζ is a bijection on Dyck paths of semilength n.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path D with corresponding area sequence a=(a1,…,an) to a Dyck path as follows:
The zeta map ζ is a bijection on Dyck paths of semilength n.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path D with corresponding area sequence a=(a1,…,an) to a Dyck path as follows:
- First, build an intermediate Dyck path consisting of d1 north steps, followed by d1 east steps, followed by d2 north steps and d2 east steps, and so on, where di is the number of i−1's within the sequence a.
For example, given a=(0,1,2,2,2,3,1,2), we build the path
NE NNEE NNNNEEEE NE. - Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the kth and the (k+1)st peak must be filled by dk east steps and dk+1 north steps. In the above example, the rectangle between the second and the third peak must be filled by 2 east and 4 north steps, the 2 being the number of 1's in a, and 4 being the number of 2's. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a k−1 or k, respectively. So to fill the 2×4 rectangle, we look for 1's and 2's in the sequence and see 122212, so this rectangle gets filled with ENNNEN.
The complete path we obtain in thus
NENNENNNENEEENEE.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending 1 to a binary word w, the i-th part of the composition equals 1 plus the number of zeros after the i-th 1 in w.
This map is not surjective, since the empty composition does not have a preimage.
Prepending 1 to a binary word w, the i-th part of the composition equals 1 plus the number of zeros after the i-th 1 in w.
This map is not surjective, since the empty composition does not have a preimage.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!