Processing math: 100%

Identifier
Values
[1] => [[1]] => 0
[2] => [[1,2]] => 0
[1,1] => [[1],[2]] => 1
[3] => [[1,2,3]] => 0
[2,1] => [[1,2],[3]] => 1
[1,1,1] => [[1],[2],[3]] => 3
[4] => [[1,2,3,4]] => 0
[3,1] => [[1,2,3],[4]] => 1
[2,2] => [[1,2],[3,4]] => 2
[2,1,1] => [[1,2],[3],[4]] => 3
[1,1,1,1] => [[1],[2],[3],[4]] => 6
[5] => [[1,2,3,4,5]] => 0
[4,1] => [[1,2,3,4],[5]] => 1
[3,2] => [[1,2,3],[4,5]] => 2
[3,1,1] => [[1,2,3],[4],[5]] => 3
[2,2,1] => [[1,2],[3,4],[5]] => 4
[2,1,1,1] => [[1,2],[3],[4],[5]] => 6
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 10
[6] => [[1,2,3,4,5,6]] => 0
[5,1] => [[1,2,3,4,5],[6]] => 1
[4,2] => [[1,2,3,4],[5,6]] => 2
[4,1,1] => [[1,2,3,4],[5],[6]] => 3
[3,3] => [[1,2,3],[4,5,6]] => 3
[3,2,1] => [[1,2,3],[4,5],[6]] => 4
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => 6
[2,2,2] => [[1,2],[3,4],[5,6]] => 6
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => 7
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => 10
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 15
[7] => [[1,2,3,4,5,6,7]] => 0
[6,1] => [[1,2,3,4,5,6],[7]] => 1
[5,2] => [[1,2,3,4,5],[6,7]] => 2
[5,1,1] => [[1,2,3,4,5],[6],[7]] => 3
[4,3] => [[1,2,3,4],[5,6,7]] => 3
[4,2,1] => [[1,2,3,4],[5,6],[7]] => 4
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 6
[3,3,1] => [[1,2,3],[4,5,6],[7]] => 5
[3,2,2] => [[1,2,3],[4,5],[6,7]] => 6
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 7
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 10
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => 9
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => 11
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => 15
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => 21
[8] => [[1,2,3,4,5,6,7,8]] => 0
[7,1] => [[1,2,3,4,5,6,7],[8]] => 1
[6,2] => [[1,2,3,4,5,6],[7,8]] => 2
[6,1,1] => [[1,2,3,4,5,6],[7],[8]] => 3
[5,3] => [[1,2,3,4,5],[6,7,8]] => 3
[5,2,1] => [[1,2,3,4,5],[6,7],[8]] => 4
[5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => 6
[4,4] => [[1,2,3,4],[5,6,7,8]] => 4
[4,3,1] => [[1,2,3,4],[5,6,7],[8]] => 5
[4,2,2] => [[1,2,3,4],[5,6],[7,8]] => 6
[4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => 7
[4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => 10
[3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 7
[3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => 8
[3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 9
[3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => 11
[3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => 15
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 12
[2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => 13
[2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => 16
[2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => 21
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => 28
[9] => [[1,2,3,4,5,6,7,8,9]] => 0
[8,1] => [[1,2,3,4,5,6,7,8],[9]] => 1
[7,2] => [[1,2,3,4,5,6,7],[8,9]] => 2
[7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => 3
[6,3] => [[1,2,3,4,5,6],[7,8,9]] => 3
[6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => 4
[6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => 6
[5,4] => [[1,2,3,4,5],[6,7,8,9]] => 4
[5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => 5
[5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => 6
[5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => 7
[5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => 10
[4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => 6
[4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => 7
[4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => 8
[4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => 9
[4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => 11
[4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => 15
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => 9
[3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => 10
[3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => 12
[3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => 12
[3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => 13
[3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => 16
[3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => 21
[2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => 16
[2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => 18
[2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => 22
[2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => 28
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 36
[10] => [[1,2,3,4,5,6,7,8,9,10]] => 0
[9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => 1
[8,2] => [[1,2,3,4,5,6,7,8],[9,10]] => 2
[8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => 3
[7,3] => [[1,2,3,4,5,6,7],[8,9,10]] => 3
>>> Load all 191 entries. <<<
[7,2,1] => [[1,2,3,4,5,6,7],[8,9],[10]] => 4
[7,1,1,1] => [[1,2,3,4,5,6,7],[8],[9],[10]] => 6
[6,4] => [[1,2,3,4,5,6],[7,8,9,10]] => 4
[6,3,1] => [[1,2,3,4,5,6],[7,8,9],[10]] => 5
[6,2,2] => [[1,2,3,4,5,6],[7,8],[9,10]] => 6
[6,2,1,1] => [[1,2,3,4,5,6],[7,8],[9],[10]] => 7
[6,1,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9],[10]] => 10
[5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => 5
[5,4,1] => [[1,2,3,4,5],[6,7,8,9],[10]] => 6
[5,3,2] => [[1,2,3,4,5],[6,7,8],[9,10]] => 7
[5,3,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10]] => 8
[5,2,2,1] => [[1,2,3,4,5],[6,7],[8,9],[10]] => 9
[5,2,1,1,1] => [[1,2,3,4,5],[6,7],[8],[9],[10]] => 11
[5,1,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9],[10]] => 15
[4,4,2] => [[1,2,3,4],[5,6,7,8],[9,10]] => 8
[4,4,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10]] => 9
[4,3,3] => [[1,2,3,4],[5,6,7],[8,9,10]] => 9
[4,3,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10]] => 10
[4,3,1,1,1] => [[1,2,3,4],[5,6,7],[8],[9],[10]] => 12
[4,2,2,2] => [[1,2,3,4],[5,6],[7,8],[9,10]] => 12
[4,2,2,1,1] => [[1,2,3,4],[5,6],[7,8],[9],[10]] => 13
[4,2,1,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9],[10]] => 16
[4,1,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9],[10]] => 21
[3,3,3,1] => [[1,2,3],[4,5,6],[7,8,9],[10]] => 12
[3,3,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10]] => 13
[3,3,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9],[10]] => 14
[3,3,1,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9],[10]] => 17
[3,2,2,2,1] => [[1,2,3],[4,5],[6,7],[8,9],[10]] => 16
[3,2,2,1,1,1] => [[1,2,3],[4,5],[6,7],[8],[9],[10]] => 18
[3,2,1,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9],[10]] => 22
[3,1,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9],[10]] => 28
[2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10]] => 20
[2,2,2,2,1,1] => [[1,2],[3,4],[5,6],[7,8],[9],[10]] => 21
[2,2,2,1,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9],[10]] => 24
[2,2,1,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9],[10]] => 29
[2,1,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10]] => 36
[1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => 45
[5,4,2] => [[1,2,3,4,5],[6,7,8,9],[10,11]] => 8
[5,4,1,1] => [[1,2,3,4,5],[6,7,8,9],[10],[11]] => 9
[5,3,3] => [[1,2,3,4,5],[6,7,8],[9,10,11]] => 9
[5,3,2,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11]] => 10
[5,3,1,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10],[11]] => 12
[5,2,2,2] => [[1,2,3,4,5],[6,7],[8,9],[10,11]] => 12
[5,2,2,1,1] => [[1,2,3,4,5],[6,7],[8,9],[10],[11]] => 13
[4,4,3] => [[1,2,3,4],[5,6,7,8],[9,10,11]] => 10
[4,4,2,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11]] => 11
[4,4,1,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10],[11]] => 13
[4,3,3,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11]] => 12
[4,3,2,2] => [[1,2,3,4],[5,6,7],[8,9],[10,11]] => 13
[4,3,2,1,1] => [[1,2,3,4],[5,6,7],[8,9],[10],[11]] => 14
[4,2,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9,10],[11]] => 16
[3,3,3,2] => [[1,2,3],[4,5,6],[7,8,9],[10,11]] => 15
[3,3,3,1,1] => [[1,2,3],[4,5,6],[7,8,9],[10],[11]] => 16
[3,3,2,2,1] => [[1,2,3],[4,5,6],[7,8],[9,10],[11]] => 17
[12] => [[1,2,3,4,5,6,7,8,9,10,11,12]] => 0
[6,6] => [[1,2,3,4,5,6],[7,8,9,10,11,12]] => 6
[6,4,2] => [[1,2,3,4,5,6],[7,8,9,10],[11,12]] => 8
[5,4,3] => [[1,2,3,4,5],[6,7,8,9],[10,11,12]] => 10
[5,4,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12]] => 11
[5,4,1,1,1] => [[1,2,3,4,5],[6,7,8,9],[10],[11],[12]] => 13
[5,3,3,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12]] => 12
[5,3,2,2] => [[1,2,3,4,5],[6,7,8],[9,10],[11,12]] => 13
[5,3,2,1,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11],[12]] => 14
[5,2,2,2,1] => [[1,2,3,4,5],[6,7],[8,9],[10,11],[12]] => 16
[4,4,3,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12]] => 13
[4,4,2,2] => [[1,2,3,4],[5,6,7,8],[9,10],[11,12]] => 14
[4,4,2,1,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11],[12]] => 15
[4,3,3,2] => [[1,2,3,4],[5,6,7],[8,9,10],[11,12]] => 15
[4,3,3,1,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11],[12]] => 16
[4,3,2,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]] => 17
[3,3,3,2,1] => [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]] => 19
[3,3,2,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]] => 22
[2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => 30
[5,4,3,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13]] => 13
[5,4,2,2] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13]] => 14
[5,4,2,1,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12],[13]] => 15
[5,3,3,2] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]] => 15
[5,3,3,1,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]] => 16
[5,3,2,2,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11,12],[13]] => 17
[4,4,3,2] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]] => 16
[4,4,3,1,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]] => 17
[4,4,2,2,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]] => 18
[4,3,3,2,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13]] => 19
[5,4,3,2] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]] => 16
[5,4,3,1,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]] => 17
[5,4,2,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]] => 18
[5,3,3,2,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]] => 19
[4,4,3,2,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]] => 20
[5,4,3,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14],[15]] => 20
[] => [] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The leg major index of a standard tableau.
The leg length of a cell is the number of cells strictly below in the same column. This statistic is the sum of all leg lengths. Therefore, this is actually a statistic on the underlying integer partition.
It happens to coincide with the (leg) major index of a tabloid restricted to standard Young tableaux, defined as follows: the descent set of a tabloid is the set of cells, not in the top row, whose entry is strictly larger than the entry directly above it. The leg major index is the sum of the leg lengths of the descents plus the number of descents.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.