Values
=>
Cc0020;cc-rep-0
Cc0020;cc-rep
([],1)=>([],2)=>0
([],2)=>([],3)=>0
([(0,1)],2)=>([(1,2)],3)=>0
([],3)=>([],4)=>0
([(1,2)],3)=>([(2,3)],4)=>0
([(0,2),(1,2)],3)=>([(1,3),(2,3)],4)=>0
([(0,1),(0,2),(1,2)],3)=>([(1,2),(1,3),(2,3)],4)=>0
([],4)=>([],5)=>0
([(2,3)],4)=>([(3,4)],5)=>0
([(1,3),(2,3)],4)=>([(2,4),(3,4)],5)=>0
([(0,3),(1,3),(2,3)],4)=>([(1,4),(2,4),(3,4)],5)=>0
([(0,3),(1,2)],4)=>([(1,4),(2,3)],5)=>0
([(0,3),(1,2),(2,3)],4)=>([(1,4),(2,3),(3,4)],5)=>0
([(1,2),(1,3),(2,3)],4)=>([(2,3),(2,4),(3,4)],5)=>0
([(0,3),(1,2),(1,3),(2,3)],4)=>([(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,2),(0,3),(1,2),(1,3)],4)=>([(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([],5)=>([],6)=>0
([(3,4)],5)=>([(4,5)],6)=>0
([(2,4),(3,4)],5)=>([(3,5),(4,5)],6)=>0
([(1,4),(2,4),(3,4)],5)=>([(2,5),(3,5),(4,5)],6)=>0
([(0,4),(1,4),(2,4),(3,4)],5)=>([(1,5),(2,5),(3,5),(4,5)],6)=>0
([(1,4),(2,3)],5)=>([(2,5),(3,4)],6)=>0
([(1,4),(2,3),(3,4)],5)=>([(2,5),(3,4),(4,5)],6)=>0
([(0,1),(2,4),(3,4)],5)=>([(1,2),(3,5),(4,5)],6)=>0
([(2,3),(2,4),(3,4)],5)=>([(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,4),(2,3),(3,4)],5)=>([(1,5),(2,5),(3,4),(4,5)],6)=>0
([(1,4),(2,3),(2,4),(3,4)],5)=>([(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(1,3),(1,4),(2,3),(2,4)],5)=>([(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,3),(2,3),(2,4)],5)=>([(1,5),(2,4),(3,4),(3,5)],6)=>0
([(0,1),(2,3),(2,4),(3,4)],5)=>([(1,2),(3,4),(3,5),(4,5)],6)=>0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([],6)=>([],7)=>0
([(4,5)],6)=>([(5,6)],7)=>0
([(3,5),(4,5)],6)=>([(4,6),(5,6)],7)=>0
([(2,5),(3,5),(4,5)],6)=>([(3,6),(4,6),(5,6)],7)=>0
([(1,5),(2,5),(3,5),(4,5)],6)=>([(2,6),(3,6),(4,6),(5,6)],7)=>0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>0
([(2,5),(3,4)],6)=>([(3,6),(4,5)],7)=>0
([(2,5),(3,4),(4,5)],6)=>([(3,6),(4,5),(5,6)],7)=>0
([(1,2),(3,5),(4,5)],6)=>([(2,3),(4,6),(5,6)],7)=>0
([(3,4),(3,5),(4,5)],6)=>([(4,5),(4,6),(5,6)],7)=>0
([(1,5),(2,5),(3,4),(4,5)],6)=>([(2,6),(3,6),(4,5),(5,6)],7)=>0
([(0,1),(2,5),(3,5),(4,5)],6)=>([(1,2),(3,6),(4,6),(5,6)],7)=>0
([(2,5),(3,4),(3,5),(4,5)],6)=>([(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>([(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(2,4),(2,5),(3,4),(3,5)],6)=>([(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,5),(1,5),(2,4),(3,4)],6)=>([(1,6),(2,6),(3,5),(4,5)],7)=>0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(2,6),(3,4),(3,5),(4,6),(5,6)],7)=>0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>([(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>([(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)=>0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(2,3)],6)=>([(1,6),(2,5),(3,4)],7)=>0
([(1,5),(2,4),(3,4),(3,5)],6)=>([(2,6),(3,5),(4,5),(4,6)],7)=>0
([(0,1),(2,5),(3,4),(4,5)],6)=>([(1,2),(3,6),(4,5),(5,6)],7)=>0
([(1,2),(3,4),(3,5),(4,5)],6)=>([(2,3),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>([(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(2,5),(2,6),(3,4),(3,6),(4,5)],7)=>0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)=>0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)=>0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>([(1,6),(2,5),(3,4),(3,5),(4,6)],7)=>0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,2),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>([(1,6),(2,6),(3,4),(3,5),(4,5)],7)=>0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)=>0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)=>0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)=>0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)=>0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)=>0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)=>0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)=>0
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)=>0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)=>1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)=>0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)=>0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>0
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7)=>0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)=>0
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>0
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal crossing number of a graph.
A drawing of a graph $G$ is a drawing in $\mathbb{R}^2$ such that
In particular, a graph is planar if and only if its minimal crossing number is $0$.
It is moreover conjectured that the crossing number of the complete graph $K_n$ [1] is
$$\frac{1}{4}\lfloor \frac{n}{2} \rfloor\lfloor \frac{n-1}{2} \rfloor\lfloor \frac{n-2}{2} \rfloor\lfloor \frac{n-3}{2} \rfloor,$$
and the crossing number of the complete bipartite graph $K_{n,m}$ [2] is
$$\lfloor \frac{n}{2} \rfloor\lfloor \frac{n-1}{2} \rfloor\lfloor \frac{m}{2} \rfloor\lfloor \frac{m-1}{2} \rfloor.$$
A general algorithm to compute the crossing number is e.g. given in [3].
This statistics data was provided by Markus Chimani [6].
A drawing of a graph $G$ is a drawing in $\mathbb{R}^2$ such that
- the vertices of $G$ are distinct points,
- the edges of $G$ are simple curves joining their endpoints,
- no edge passes through a vertex, and
- no three edges cross in a common point.
In particular, a graph is planar if and only if its minimal crossing number is $0$.
It is moreover conjectured that the crossing number of the complete graph $K_n$ [1] is
$$\frac{1}{4}\lfloor \frac{n}{2} \rfloor\lfloor \frac{n-1}{2} \rfloor\lfloor \frac{n-2}{2} \rfloor\lfloor \frac{n-3}{2} \rfloor,$$
and the crossing number of the complete bipartite graph $K_{n,m}$ [2] is
$$\lfloor \frac{n}{2} \rfloor\lfloor \frac{n-1}{2} \rfloor\lfloor \frac{m}{2} \rfloor\lfloor \frac{m-1}{2} \rfloor.$$
A general algorithm to compute the crossing number is e.g. given in [3].
This statistics data was provided by Markus Chimani [6].
Map
vertex addition
Description
Adds a disconnected vertex to a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!