*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000318

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of addable cells of the Ferrers diagram of an integer partition.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return len(L.addable_cells())

-----------------------------------------------------------------------------
Statistic values:

[]                    => 1
[1]                   => 2
[2]                   => 2
[1,1]                 => 2
[3]                   => 2
[2,1]                 => 3
[1,1,1]               => 2
[4]                   => 2
[3,1]                 => 3
[2,2]                 => 2
[2,1,1]               => 3
[1,1,1,1]             => 2
[5]                   => 2
[4,1]                 => 3
[3,2]                 => 3
[3,1,1]               => 3
[2,2,1]               => 3
[2,1,1,1]             => 3
[1,1,1,1,1]           => 2
[6]                   => 2
[5,1]                 => 3
[4,2]                 => 3
[4,1,1]               => 3
[3,3]                 => 2
[3,2,1]               => 4
[3,1,1,1]             => 3
[2,2,2]               => 2
[2,2,1,1]             => 3
[2,1,1,1,1]           => 3
[1,1,1,1,1,1]         => 2
[7]                   => 2
[6,1]                 => 3
[5,2]                 => 3
[5,1,1]               => 3
[4,3]                 => 3
[4,2,1]               => 4
[4,1,1,1]             => 3
[3,3,1]               => 3
[3,2,2]               => 3
[3,2,1,1]             => 4
[3,1,1,1,1]           => 3
[2,2,2,1]             => 3
[2,2,1,1,1]           => 3
[2,1,1,1,1,1]         => 3
[1,1,1,1,1,1,1]       => 2
[8]                   => 2
[7,1]                 => 3
[6,2]                 => 3
[6,1,1]               => 3
[5,3]                 => 3
[5,2,1]               => 4
[5,1,1,1]             => 3
[4,4]                 => 2
[4,3,1]               => 4
[4,2,2]               => 3
[4,2,1,1]             => 4
[4,1,1,1,1]           => 3
[3,3,2]               => 3
[3,3,1,1]             => 3
[3,2,2,1]             => 4
[3,2,1,1,1]           => 4
[3,1,1,1,1,1]         => 3
[2,2,2,2]             => 2
[2,2,2,1,1]           => 3
[2,2,1,1,1,1]         => 3
[2,1,1,1,1,1,1]       => 3
[1,1,1,1,1,1,1,1]     => 2
[9]                   => 2
[8,1]                 => 3
[7,2]                 => 3
[7,1,1]               => 3
[6,3]                 => 3
[6,2,1]               => 4
[6,1,1,1]             => 3
[5,4]                 => 3
[5,3,1]               => 4
[5,2,2]               => 3
[5,2,1,1]             => 4
[5,1,1,1,1]           => 3
[4,4,1]               => 3
[4,3,2]               => 4
[4,3,1,1]             => 4
[4,2,2,1]             => 4
[4,2,1,1,1]           => 4
[4,1,1,1,1,1]         => 3
[3,3,3]               => 2
[3,3,2,1]             => 4
[3,3,1,1,1]           => 3
[3,2,2,2]             => 3
[3,2,2,1,1]           => 4
[3,2,1,1,1,1]         => 4
[3,1,1,1,1,1,1]       => 3
[2,2,2,2,1]           => 3
[2,2,2,1,1,1]         => 3
[2,2,1,1,1,1,1]       => 3
[2,1,1,1,1,1,1,1]     => 3
[1,1,1,1,1,1,1,1,1]   => 2
[10]                  => 2
[9,1]                 => 3
[8,2]                 => 3
[8,1,1]               => 3
[7,3]                 => 3
[7,2,1]               => 4
[7,1,1,1]             => 3
[6,4]                 => 3
[6,3,1]               => 4
[6,2,2]               => 3
[6,2,1,1]             => 4
[6,1,1,1,1]           => 3
[5,5]                 => 2
[5,4,1]               => 4
[5,3,2]               => 4
[5,3,1,1]             => 4
[5,2,2,1]             => 4
[5,2,1,1,1]           => 4
[5,1,1,1,1,1]         => 3
[4,4,2]               => 3
[4,4,1,1]             => 3
[4,3,3]               => 3
[4,3,2,1]             => 5
[4,3,1,1,1]           => 4
[4,2,2,2]             => 3
[4,2,2,1,1]           => 4
[4,2,1,1,1,1]         => 4
[4,1,1,1,1,1,1]       => 3
[3,3,3,1]             => 3
[3,3,2,2]             => 3
[3,3,2,1,1]           => 4
[3,3,1,1,1,1]         => 3
[3,2,2,2,1]           => 4
[3,2,2,1,1,1]         => 4
[3,2,1,1,1,1,1]       => 4
[3,1,1,1,1,1,1,1]     => 3
[2,2,2,2,2]           => 2
[2,2,2,2,1,1]         => 3
[2,2,2,1,1,1,1]       => 3
[2,2,1,1,1,1,1,1]     => 3
[2,1,1,1,1,1,1,1,1]   => 3
[1,1,1,1,1,1,1,1,1,1] => 2
[5,4,2]               => 4
[5,4,1,1]             => 4
[5,3,3]               => 3
[5,3,2,1]             => 5
[5,3,1,1,1]           => 4
[5,2,2,2]             => 3
[5,2,2,1,1]           => 4
[4,4,3]               => 3
[4,4,2,1]             => 4
[4,4,1,1,1]           => 3
[4,3,3,1]             => 4
[4,3,2,2]             => 4
[4,3,2,1,1]           => 5
[4,2,2,2,1]           => 4
[3,3,3,2]             => 3
[3,3,3,1,1]           => 3
[3,3,2,2,1]           => 4
[6,4,2]               => 4
[5,4,3]               => 4
[5,4,2,1]             => 5
[5,4,1,1,1]           => 4
[5,3,3,1]             => 4
[5,3,2,2]             => 4
[5,3,2,1,1]           => 5
[5,2,2,2,1]           => 4
[4,4,3,1]             => 4
[4,4,2,2]             => 3
[4,4,2,1,1]           => 4
[4,3,3,2]             => 4
[4,3,3,1,1]           => 4
[4,3,2,2,1]           => 5
[3,3,3,2,1]           => 4
[3,3,2,2,1,1]         => 4
[5,4,3,1]             => 5
[5,4,2,2]             => 4
[5,4,2,1,1]           => 5
[5,3,3,2]             => 4
[5,3,3,1,1]           => 4
[5,3,2,2,1]           => 5
[4,4,3,2]             => 4
[4,4,3,1,1]           => 4
[4,4,2,2,1]           => 4
[4,3,3,2,1]           => 5
[5,4,3,2]             => 5
[5,4,3,1,1]           => 5
[5,4,2,2,1]           => 5
[5,3,3,2,1]           => 5
[4,4,3,2,1]           => 5
[5,4,3,2,1]           => 6

-----------------------------------------------------------------------------
Created: Dec 08, 2015 at 16:29 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: May 14, 2018 at 20:50 by Martin Rubey