***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St000310 ----------------------------------------------------------------------------- Collection: Graphs ----------------------------------------------------------------------------- Description: The minimal degree of a vertex of a graph. ----------------------------------------------------------------------------- References: ----------------------------------------------------------------------------- Code: def statistic(G): return min(G.degree_sequence()) ----------------------------------------------------------------------------- Statistic values: ([],1) => 0 ([],2) => 0 ([(0,1)],2) => 1 ([],3) => 0 ([(1,2)],3) => 0 ([(0,2),(1,2)],3) => 1 ([(0,1),(0,2),(1,2)],3) => 2 ([],4) => 0 ([(2,3)],4) => 0 ([(1,3),(2,3)],4) => 0 ([(0,3),(1,3),(2,3)],4) => 1 ([(0,3),(1,2)],4) => 1 ([(0,3),(1,2),(2,3)],4) => 1 ([(1,2),(1,3),(2,3)],4) => 0 ([(0,3),(1,2),(1,3),(2,3)],4) => 1 ([(0,2),(0,3),(1,2),(1,3)],4) => 2 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3 ([],5) => 0 ([(3,4)],5) => 0 ([(2,4),(3,4)],5) => 0 ([(1,4),(2,4),(3,4)],5) => 0 ([(0,4),(1,4),(2,4),(3,4)],5) => 1 ([(1,4),(2,3)],5) => 0 ([(1,4),(2,3),(3,4)],5) => 0 ([(0,1),(2,4),(3,4)],5) => 1 ([(2,3),(2,4),(3,4)],5) => 0 ([(0,4),(1,4),(2,3),(3,4)],5) => 1 ([(1,4),(2,3),(2,4),(3,4)],5) => 0 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1 ([(1,3),(1,4),(2,3),(2,4)],5) => 0 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 2 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,4),(1,3),(2,3),(2,4)],5) => 1 ([(0,1),(2,3),(2,4),(3,4)],5) => 1 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 1 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 1 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 2 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 3 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4 ([],6) => 0 ([(4,5)],6) => 0 ([(3,5),(4,5)],6) => 0 ([(2,5),(3,5),(4,5)],6) => 0 ([(1,5),(2,5),(3,5),(4,5)],6) => 0 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1 ([(2,5),(3,4)],6) => 0 ([(2,5),(3,4),(4,5)],6) => 0 ([(1,2),(3,5),(4,5)],6) => 0 ([(3,4),(3,5),(4,5)],6) => 0 ([(1,5),(2,5),(3,4),(4,5)],6) => 0 ([(0,1),(2,5),(3,5),(4,5)],6) => 1 ([(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 1 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(2,4),(2,5),(3,4),(3,5)],6) => 0 ([(0,5),(1,5),(2,4),(3,4)],6) => 1 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 1 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 1 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 1 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 1 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,4),(2,3)],6) => 1 ([(1,5),(2,4),(3,4),(3,5)],6) => 0 ([(0,1),(2,5),(3,4),(4,5)],6) => 1 ([(1,2),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 0 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 0 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 1 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 1 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 1 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => 1 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 1 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 1 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => 2 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => 1 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 1 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => 2 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 1 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 0 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 0 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 2 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 2 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 1 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 1 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 3 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 2 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 1 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 2 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 2 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => 2 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 3 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5 ----------------------------------------------------------------------------- Created: Dec 07, 2015 at 19:28 by Christian Stump ----------------------------------------------------------------------------- Last Updated: Dec 07, 2015 at 19:28 by Christian Stump