*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000284

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The Plancherel distribution on integer partitions.

This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions.

Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.

-----------------------------------------------------------------------------
References: [1]   [[wikipedia:Plancherel_measure]]

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return L.standard_tableaux().cardinality()^2

-----------------------------------------------------------------------------
Statistic values:

[2]                       => 1
[1,1]                     => 1
[3]                       => 1
[2,1]                     => 4
[1,1,1]                   => 1
[4]                       => 1
[3,1]                     => 9
[2,2]                     => 4
[2,1,1]                   => 9
[1,1,1,1]                 => 1
[5]                       => 1
[4,1]                     => 16
[3,2]                     => 25
[3,1,1]                   => 36
[2,2,1]                   => 25
[2,1,1,1]                 => 16
[1,1,1,1,1]               => 1
[6]                       => 1
[5,1]                     => 25
[4,2]                     => 81
[4,1,1]                   => 100
[3,3]                     => 25
[3,2,1]                   => 256
[3,1,1,1]                 => 100
[2,2,2]                   => 25
[2,2,1,1]                 => 81
[2,1,1,1,1]               => 25
[1,1,1,1,1,1]             => 1
[7]                       => 1
[6,1]                     => 36
[5,2]                     => 196
[5,1,1]                   => 225
[4,3]                     => 196
[4,2,1]                   => 1225
[4,1,1,1]                 => 400
[3,3,1]                   => 441
[3,2,2]                   => 441
[3,2,1,1]                 => 1225
[3,1,1,1,1]               => 225
[2,2,2,1]                 => 196
[2,2,1,1,1]               => 196
[2,1,1,1,1,1]             => 36
[1,1,1,1,1,1,1]           => 1
[8]                       => 1
[7,1]                     => 49
[6,2]                     => 400
[6,1,1]                   => 441
[5,3]                     => 784
[5,2,1]                   => 4096
[5,1,1,1]                 => 1225
[4,4]                     => 196
[4,3,1]                   => 4900
[4,2,2]                   => 3136
[4,2,1,1]                 => 8100
[4,1,1,1,1]               => 1225
[3,3,2]                   => 1764
[3,3,1,1]                 => 3136
[3,2,2,1]                 => 4900
[3,2,1,1,1]               => 4096
[3,1,1,1,1,1]             => 441
[2,2,2,2]                 => 196
[2,2,2,1,1]               => 784
[2,2,1,1,1,1]             => 400
[2,1,1,1,1,1,1]           => 49
[1,1,1,1,1,1,1,1]         => 1
[9]                       => 1
[8,1]                     => 64
[7,2]                     => 729
[7,1,1]                   => 784
[6,3]                     => 2304
[6,2,1]                   => 11025
[6,1,1,1]                 => 3136
[5,4]                     => 1764
[5,3,1]                   => 26244
[5,2,2]                   => 14400
[5,2,1,1]                 => 35721
[5,1,1,1,1]               => 4900
[4,4,1]                   => 7056
[4,3,2]                   => 28224
[4,3,1,1]                 => 46656
[4,2,2,1]                 => 46656
[4,2,1,1,1]               => 35721
[4,1,1,1,1,1]             => 3136
[3,3,3]                   => 1764
[3,3,2,1]                 => 28224
[3,3,1,1,1]               => 14400
[3,2,2,2]                 => 7056
[3,2,2,1,1]               => 26244
[3,2,1,1,1,1]             => 11025
[3,1,1,1,1,1,1]           => 784
[2,2,2,2,1]               => 1764
[2,2,2,1,1,1]             => 2304
[2,2,1,1,1,1,1]           => 729
[2,1,1,1,1,1,1,1]         => 64
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 1
[9,1]                     => 81
[8,2]                     => 1225
[8,1,1]                   => 1296
[7,3]                     => 5625
[7,2,1]                   => 25600
[7,1,1,1]                 => 7056
[6,4]                     => 8100
[6,3,1]                   => 99225
[6,2,2]                   => 50625
[6,2,1,1]                 => 122500
[6,1,1,1,1]               => 15876
[5,5]                     => 1764
[5,4,1]                   => 82944
[5,3,2]                   => 202500
[5,3,1,1]                 => 321489
[5,2,2,1]                 => 275625
[5,2,1,1,1]               => 200704
[5,1,1,1,1,1]             => 15876
[4,4,2]                   => 63504
[4,4,1,1]                 => 90000
[4,3,3]                   => 44100
[4,3,2,1]                 => 589824
[4,3,1,1,1]               => 275625
[4,2,2,2]                 => 90000
[4,2,2,1,1]               => 321489
[4,2,1,1,1,1]             => 122500
[4,1,1,1,1,1,1]           => 7056
[3,3,3,1]                 => 44100
[3,3,2,2]                 => 63504
[3,3,2,1,1]               => 202500
[3,3,1,1,1,1]             => 50625
[3,2,2,2,1]               => 82944
[3,2,2,1,1,1]             => 99225
[3,2,1,1,1,1,1]           => 25600
[3,1,1,1,1,1,1,1]         => 1296
[2,2,2,2,2]               => 1764
[2,2,2,2,1,1]             => 8100
[2,2,2,1,1,1,1]           => 5625
[2,2,1,1,1,1,1,1]         => 1225
[2,1,1,1,1,1,1,1,1]       => 81
[1,1,1,1,1,1,1,1,1,1]     => 1
[11]                      => 1
[10,1]                    => 100
[9,2]                     => 1936
[9,1,1]                   => 2025
[8,3]                     => 12100
[8,2,1]                   => 53361
[8,1,1,1]                 => 14400
[7,4]                     => 27225
[7,3,1]                   => 302500
[7,2,2]                   => 148225
[7,2,1,1]                 => 352836
[7,1,1,1,1]               => 44100
[6,5]                     => 17424
[6,4,1]                   => 480249
[6,3,2]                   => 980100
[6,3,1,1]                 => 1517824
[6,2,2,1]                 => 1210000
[6,2,1,1,1]               => 853776
[6,1,1,1,1,1]             => 63504
[5,5,1]                   => 108900
[5,4,2]                   => 980100
[5,4,1,1]                 => 1334025
[5,3,3]                   => 435600
[5,3,2,1]                 => 5336100
[5,3,1,1,1]               => 2371600
[5,2,2,2]                 => 680625
[5,2,2,1,1]               => 2371600
[5,2,1,1,1,1]             => 853776
[5,1,1,1,1,1,1]           => 44100
[4,4,3]                   => 213444
[4,4,2,1]                 => 1742400
[4,4,1,1,1]               => 680625
[4,3,3,1]                 => 1411344
[4,3,2,2]                 => 1742400
[4,3,2,1,1]               => 5336100
[4,3,1,1,1,1]             => 1210000
[4,2,2,2,1]               => 1334025
[4,2,2,1,1,1]             => 1517824
[4,2,1,1,1,1,1]           => 352836
[4,1,1,1,1,1,1,1]         => 14400
[3,3,3,2]                 => 213444
[3,3,3,1,1]               => 435600
[3,3,2,2,1]               => 980100
[3,3,2,1,1,1]             => 980100
[3,3,1,1,1,1,1]           => 148225
[3,2,2,2,2]               => 108900
[3,2,2,2,1,1]             => 480249
[3,2,2,1,1,1,1]           => 302500
[3,2,1,1,1,1,1,1]         => 53361
[3,1,1,1,1,1,1,1,1]       => 2025
[2,2,2,2,2,1]             => 17424
[2,2,2,2,1,1,1]           => 27225
[2,2,2,1,1,1,1,1]         => 12100
[2,2,1,1,1,1,1,1,1]       => 1936
[2,1,1,1,1,1,1,1,1,1]     => 100
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 1
[11,1]                    => 121
[10,2]                    => 2916
[10,1,1]                  => 3025
[9,3]                     => 23716
[9,2,1]                   => 102400
[9,1,1,1]                 => 27225
[8,4]                     => 75625
[8,3,1]                   => 793881
[8,2,2]                   => 379456
[8,2,1,1]                 => 893025
[8,1,1,1,1]               => 108900
[7,5]                     => 88209
[7,4,1]                   => 1982464
[7,3,2]                   => 3705625
[7,3,1,1]                 => 5645376
[7,2,2,1]                 => 4322241
[7,2,1,1,1]               => 2985984
[7,1,1,1,1,1]             => 213444
[6,6]                     => 17424
[6,5,1]                   => 1334025
[6,4,2]                   => 7144929
[6,4,1,1]                 => 9486400
[6,3,3]                   => 2722500
[6,3,2,1]                 => 31719424
[6,3,1,1,1]               => 13660416
[6,2,2,2]                 => 3705625
[6,2,2,1,1]               => 12702096
[6,2,1,1,1,1]             => 4410000
[6,1,1,1,1,1,1]           => 213444
[5,5,2]                   => 1742400
[5,5,1,1]                 => 2205225
[5,4,3]                   => 4460544
[5,4,2,1]                 => 33350625
[5,4,1,1,1]               => 12390400
[5,3,3,1]                 => 17288964
[5,3,2,2]                 => 19847025
[5,3,2,1,1]               => 59290000
[5,3,1,1,1,1]             => 12702096
[5,2,2,2,1]               => 12390400
[5,2,2,1,1,1]             => 13660416
[5,2,1,1,1,1,1]           => 2985984
[5,1,1,1,1,1,1,1]         => 108900
[4,4,4]                   => 213444
[4,4,3,1]                 => 8820900
[4,4,2,2]                 => 6969600
[4,4,2,1,1]               => 19847025
[4,4,1,1,1,1]             => 3705625
[4,3,3,2]                 => 8820900
[4,3,3,1,1]               => 17288964
[4,3,2,2,1]               => 33350625
[4,3,2,1,1,1]             => 31719424
[4,3,1,1,1,1,1]           => 4322241
[4,2,2,2,2]               => 2205225
[4,2,2,2,1,1]             => 9486400
[4,2,2,1,1,1,1]           => 5645376
[4,2,1,1,1,1,1,1]         => 893025
[4,1,1,1,1,1,1,1,1]       => 27225
[3,3,3,3]                 => 213444
[3,3,3,2,1]               => 4460544
[3,3,3,1,1,1]             => 2722500
[3,3,2,2,2]               => 1742400
[3,3,2,2,1,1]             => 7144929
[3,3,2,1,1,1,1]           => 3705625
[3,3,1,1,1,1,1,1]         => 379456
[3,2,2,2,2,1]             => 1334025
[3,2,2,2,1,1,1]           => 1982464
[3,2,2,1,1,1,1,1]         => 793881
[3,2,1,1,1,1,1,1,1]       => 102400
[3,1,1,1,1,1,1,1,1,1]     => 3025
[2,2,2,2,2,2]             => 17424
[2,2,2,2,2,1,1]           => 88209
[2,2,2,2,1,1,1,1]         => 75625
[2,2,2,1,1,1,1,1,1]       => 23716
[2,2,1,1,1,1,1,1,1,1]     => 2916
[2,1,1,1,1,1,1,1,1,1,1]   => 121
[1,1,1,1,1,1,1,1,1,1,1,1] => 1

-----------------------------------------------------------------------------
Created: Sep 15, 2015 at 08:40 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Jul 12, 2017 at 10:03 by Christian Stump