*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000278

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions.

This is the multinomial of the multiplicities of the parts, see [1].

This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$,
where $k$ is the number of parts of $\lambda$.
An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$
where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.

-----------------------------------------------------------------------------
References: [1]   Preferred multisets: triangle of numbers refining A007318 using format described in A036038. [[OEIS:A048996]]

-----------------------------------------------------------------------------
Code:
def statistic(la):
    return multinomial(la.to_exp())


-----------------------------------------------------------------------------
Statistic values:

[]                        => 1
[1]                       => 1
[2]                       => 1
[1,1]                     => 1
[3]                       => 1
[2,1]                     => 2
[1,1,1]                   => 1
[4]                       => 1
[3,1]                     => 2
[2,2]                     => 1
[2,1,1]                   => 3
[1,1,1,1]                 => 1
[5]                       => 1
[4,1]                     => 2
[3,2]                     => 2
[3,1,1]                   => 3
[2,2,1]                   => 3
[2,1,1,1]                 => 4
[1,1,1,1,1]               => 1
[6]                       => 1
[5,1]                     => 2
[4,2]                     => 2
[4,1,1]                   => 3
[3,3]                     => 1
[3,2,1]                   => 6
[3,1,1,1]                 => 4
[2,2,2]                   => 1
[2,2,1,1]                 => 6
[2,1,1,1,1]               => 5
[1,1,1,1,1,1]             => 1
[7]                       => 1
[6,1]                     => 2
[5,2]                     => 2
[5,1,1]                   => 3
[4,3]                     => 2
[4,2,1]                   => 6
[4,1,1,1]                 => 4
[3,3,1]                   => 3
[3,2,2]                   => 3
[3,2,1,1]                 => 12
[3,1,1,1,1]               => 5
[2,2,2,1]                 => 4
[2,2,1,1,1]               => 10
[2,1,1,1,1,1]             => 6
[1,1,1,1,1,1,1]           => 1
[8]                       => 1
[7,1]                     => 2
[6,2]                     => 2
[6,1,1]                   => 3
[5,3]                     => 2
[5,2,1]                   => 6
[5,1,1,1]                 => 4
[4,4]                     => 1
[4,3,1]                   => 6
[4,2,2]                   => 3
[4,2,1,1]                 => 12
[4,1,1,1,1]               => 5
[3,3,2]                   => 3
[3,3,1,1]                 => 6
[3,2,2,1]                 => 12
[3,2,1,1,1]               => 20
[3,1,1,1,1,1]             => 6
[2,2,2,2]                 => 1
[2,2,2,1,1]               => 10
[2,2,1,1,1,1]             => 15
[2,1,1,1,1,1,1]           => 7
[1,1,1,1,1,1,1,1]         => 1
[9]                       => 1
[8,1]                     => 2
[7,2]                     => 2
[7,1,1]                   => 3
[6,3]                     => 2
[6,2,1]                   => 6
[6,1,1,1]                 => 4
[5,4]                     => 2
[5,3,1]                   => 6
[5,2,2]                   => 3
[5,2,1,1]                 => 12
[5,1,1,1,1]               => 5
[4,4,1]                   => 3
[4,3,2]                   => 6
[4,3,1,1]                 => 12
[4,2,2,1]                 => 12
[4,2,1,1,1]               => 20
[4,1,1,1,1,1]             => 6
[3,3,3]                   => 1
[3,3,2,1]                 => 12
[3,3,1,1,1]               => 10
[3,2,2,2]                 => 4
[3,2,2,1,1]               => 30
[3,2,1,1,1,1]             => 30
[3,1,1,1,1,1,1]           => 7
[2,2,2,2,1]               => 5
[2,2,2,1,1,1]             => 20
[2,2,1,1,1,1,1]           => 21
[2,1,1,1,1,1,1,1]         => 8
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 1
[9,1]                     => 2
[8,2]                     => 2
[8,1,1]                   => 3
[7,3]                     => 2
[7,2,1]                   => 6
[7,1,1,1]                 => 4
[6,4]                     => 2
[6,3,1]                   => 6
[6,2,2]                   => 3
[6,2,1,1]                 => 12
[6,1,1,1,1]               => 5
[5,5]                     => 1
[5,4,1]                   => 6
[5,3,2]                   => 6
[5,3,1,1]                 => 12
[5,2,2,1]                 => 12
[5,2,1,1,1]               => 20
[5,1,1,1,1,1]             => 6
[4,4,2]                   => 3
[4,4,1,1]                 => 6
[4,3,3]                   => 3
[4,3,2,1]                 => 24
[4,3,1,1,1]               => 20
[4,2,2,2]                 => 4
[4,2,2,1,1]               => 30
[4,2,1,1,1,1]             => 30
[4,1,1,1,1,1,1]           => 7
[3,3,3,1]                 => 4
[3,3,2,2]                 => 6
[3,3,2,1,1]               => 30
[3,3,1,1,1,1]             => 15
[3,2,2,2,1]               => 20
[3,2,2,1,1,1]             => 60
[3,2,1,1,1,1,1]           => 42
[3,1,1,1,1,1,1,1]         => 8
[2,2,2,2,2]               => 1
[2,2,2,2,1,1]             => 15
[2,2,2,1,1,1,1]           => 35
[2,2,1,1,1,1,1,1]         => 28
[2,1,1,1,1,1,1,1,1]       => 9
[1,1,1,1,1,1,1,1,1,1]     => 1
[11]                      => 1
[10,1]                    => 2
[9,2]                     => 2
[9,1,1]                   => 3
[8,3]                     => 2
[8,2,1]                   => 6
[8,1,1,1]                 => 4
[7,4]                     => 2
[7,3,1]                   => 6
[7,2,2]                   => 3
[7,2,1,1]                 => 12
[7,1,1,1,1]               => 5
[6,5]                     => 2
[6,4,1]                   => 6
[6,3,2]                   => 6
[6,3,1,1]                 => 12
[6,2,2,1]                 => 12
[6,2,1,1,1]               => 20
[6,1,1,1,1,1]             => 6
[5,5,1]                   => 3
[5,4,2]                   => 6
[5,4,1,1]                 => 12
[5,3,3]                   => 3
[5,3,2,1]                 => 24
[5,3,1,1,1]               => 20
[5,2,2,2]                 => 4
[5,2,2,1,1]               => 30
[5,2,1,1,1,1]             => 30
[5,1,1,1,1,1,1]           => 7
[4,4,3]                   => 3
[4,4,2,1]                 => 12
[4,4,1,1,1]               => 10
[4,3,3,1]                 => 12
[4,3,2,2]                 => 12
[4,3,2,1,1]               => 60
[4,3,1,1,1,1]             => 30
[4,2,2,2,1]               => 20
[4,2,2,1,1,1]             => 60
[4,2,1,1,1,1,1]           => 42
[4,1,1,1,1,1,1,1]         => 8
[3,3,3,2]                 => 4
[3,3,3,1,1]               => 10
[3,3,2,2,1]               => 30
[3,3,2,1,1,1]             => 60
[3,3,1,1,1,1,1]           => 21
[3,2,2,2,2]               => 5
[3,2,2,2,1,1]             => 60
[3,2,2,1,1,1,1]           => 105
[3,2,1,1,1,1,1,1]         => 56
[3,1,1,1,1,1,1,1,1]       => 9
[2,2,2,2,2,1]             => 6
[2,2,2,2,1,1,1]           => 35
[2,2,2,1,1,1,1,1]         => 56
[2,2,1,1,1,1,1,1,1]       => 36
[2,1,1,1,1,1,1,1,1,1]     => 10
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 1
[11,1]                    => 2
[10,2]                    => 2
[10,1,1]                  => 3
[9,3]                     => 2
[9,2,1]                   => 6
[9,1,1,1]                 => 4
[8,4]                     => 2
[8,3,1]                   => 6
[8,2,2]                   => 3
[8,2,1,1]                 => 12
[8,1,1,1,1]               => 5
[7,5]                     => 2
[7,4,1]                   => 6
[7,3,2]                   => 6
[7,3,1,1]                 => 12
[7,2,2,1]                 => 12
[7,2,1,1,1]               => 20
[7,1,1,1,1,1]             => 6
[6,6]                     => 1
[6,5,1]                   => 6
[6,4,2]                   => 6
[6,4,1,1]                 => 12
[6,3,3]                   => 3
[6,3,2,1]                 => 24
[6,3,1,1,1]               => 20
[6,2,2,2]                 => 4
[6,2,2,1,1]               => 30
[6,2,1,1,1,1]             => 30
[6,1,1,1,1,1,1]           => 7
[5,5,2]                   => 3
[5,5,1,1]                 => 6
[5,4,3]                   => 6
[5,4,2,1]                 => 24
[5,4,1,1,1]               => 20
[5,3,3,1]                 => 12
[5,3,2,2]                 => 12
[5,3,2,1,1]               => 60
[5,3,1,1,1,1]             => 30
[5,2,2,2,1]               => 20
[5,2,2,1,1,1]             => 60
[5,2,1,1,1,1,1]           => 42
[5,1,1,1,1,1,1,1]         => 8
[4,4,4]                   => 1
[4,4,3,1]                 => 12
[4,4,2,2]                 => 6
[4,4,2,1,1]               => 30
[4,4,1,1,1,1]             => 15
[4,3,3,2]                 => 12
[4,3,3,1,1]               => 30
[4,3,2,2,1]               => 60
[4,3,2,1,1,1]             => 120
[4,3,1,1,1,1,1]           => 42
[4,2,2,2,2]               => 5
[4,2,2,2,1,1]             => 60
[4,2,2,1,1,1,1]           => 105
[4,2,1,1,1,1,1,1]         => 56
[4,1,1,1,1,1,1,1,1]       => 9
[3,3,3,3]                 => 1
[3,3,3,2,1]               => 20
[3,3,3,1,1,1]             => 20
[3,3,2,2,2]               => 10
[3,3,2,2,1,1]             => 90
[3,3,2,1,1,1,1]           => 105
[3,3,1,1,1,1,1,1]         => 28
[3,2,2,2,2,1]             => 30
[3,2,2,2,1,1,1]           => 140
[3,2,2,1,1,1,1,1]         => 168
[3,2,1,1,1,1,1,1,1]       => 72
[3,1,1,1,1,1,1,1,1,1]     => 10
[2,2,2,2,2,2]             => 1
[2,2,2,2,2,1,1]           => 21
[2,2,2,2,1,1,1,1]         => 70
[2,2,2,1,1,1,1,1,1]       => 84
[2,2,1,1,1,1,1,1,1,1]     => 45
[2,1,1,1,1,1,1,1,1,1,1]   => 11
[1,1,1,1,1,1,1,1,1,1,1,1] => 1

-----------------------------------------------------------------------------
Created: Sep 11, 2015 at 22:04 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Nov 29, 2023 at 14:21 by Martin Rubey