*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000277

-----------------------------------------------------------------------------
Collection: Integer compositions

-----------------------------------------------------------------------------
Description: The number of ribbon shaped standard tableaux.

A ribbon is a connected skew shape which does not contain a $2\times 2$ square.  The set of ribbon shapes are therefore in bijection with integer compositons, the parts of the composition specify the row lengths.  This statistic records the number of standard tableaux of the given shape.

This is also the size of the preimage of the map 'descent composition' [[Mp00071]] from permutations to integer compositions: reading a tableau from bottom to top we obtain a permutation whose descent set is as prescribed.

For a composition $c=c_1,\dots,c_k$ of $n$, the number of ribbon shaped standard tableaux equals
$$
\sum_d (-1)^{k-\ell} \binom{n}{d_1, d_2, \dots, d_\ell},
$$
where the sum is over all coarsenings of $c$ obtained by replacing consecutive summands by their sum, see [sec 14.4, 1]

-----------------------------------------------------------------------------
References: [1]   Stanley, R. P. Enumerative combinatorics. Volume 1 [[MathSciNet:2868112]]

-----------------------------------------------------------------------------
Code:
def composition_to_ribbon(c):
    inner = []
    outer = []
    indent = 0
    for p in reversed(c):
        if indent > 0:
            inner.append(indent)
        outer.append(p+indent)
        indent += p-1
    return SkewPartition([outer[::-1], inner[::-1]])

def statistic(c):
    return StandardSkewTableaux(composition_to_ribbon(c)).cardinality()


-----------------------------------------------------------------------------
Statistic values:

[1]                       => 1
[1,1]                     => 1
[2]                       => 1
[1,1,1]                   => 1
[1,2]                     => 2
[2,1]                     => 2
[3]                       => 1
[1,1,1,1]                 => 1
[1,1,2]                   => 3
[1,2,1]                   => 5
[1,3]                     => 3
[2,1,1]                   => 3
[2,2]                     => 5
[3,1]                     => 3
[4]                       => 1
[1,1,1,1,1]               => 1
[1,1,1,2]                 => 4
[1,1,2,1]                 => 9
[1,1,3]                   => 6
[1,2,1,1]                 => 9
[1,2,2]                   => 16
[1,3,1]                   => 11
[1,4]                     => 4
[2,1,1,1]                 => 4
[2,1,2]                   => 11
[2,2,1]                   => 16
[2,3]                     => 9
[3,1,1]                   => 6
[3,2]                     => 9
[4,1]                     => 4
[5]                       => 1
[1,1,1,1,1,1]             => 1
[1,1,1,1,2]               => 5
[1,1,1,2,1]               => 14
[1,1,1,3]                 => 10
[1,1,2,1,1]               => 19
[1,1,2,2]                 => 35
[1,1,3,1]                 => 26
[1,1,4]                   => 10
[1,2,1,1,1]               => 14
[1,2,1,2]                 => 40
[1,2,2,1]                 => 61
[1,2,3]                   => 35
[1,3,1,1]                 => 26
[1,3,2]                   => 40
[1,4,1]                   => 19
[1,5]                     => 5
[2,1,1,1,1]               => 5
[2,1,1,2]                 => 19
[2,1,2,1]                 => 40
[2,1,3]                   => 26
[2,2,1,1]                 => 35
[2,2,2]                   => 61
[2,3,1]                   => 40
[2,4]                     => 14
[3,1,1,1]                 => 10
[3,1,2]                   => 26
[3,2,1]                   => 35
[3,3]                     => 19
[4,1,1]                   => 10
[4,2]                     => 14
[5,1]                     => 5
[6]                       => 1
[1,1,1,1,1,1,1]           => 1
[1,1,1,1,1,2]             => 6
[1,1,1,1,2,1]             => 20
[1,1,1,1,3]               => 15
[1,1,1,2,1,1]             => 34
[1,1,1,2,2]               => 64
[1,1,1,3,1]               => 50
[1,1,1,4]                 => 20
[1,1,2,1,1,1]             => 34
[1,1,2,1,2]               => 99
[1,1,2,2,1]               => 155
[1,1,2,3]                 => 90
[1,1,3,1,1]               => 71
[1,1,3,2]                 => 111
[1,1,4,1]                 => 55
[1,1,5]                   => 15
[1,2,1,1,1,1]             => 20
[1,2,1,1,2]               => 78
[1,2,1,2,1]               => 169
[1,2,1,3]                 => 111
[1,2,2,1,1]               => 155
[1,2,2,2]                 => 272
[1,2,3,1]                 => 181
[1,2,4]                   => 64
[1,3,1,1,1]               => 50
[1,3,1,2]                 => 132
[1,3,2,1]                 => 181
[1,3,3]                   => 99
[1,4,1,1]                 => 55
[1,4,2]                   => 78
[1,5,1]                   => 29
[1,6]                     => 6
[2,1,1,1,1,1]             => 6
[2,1,1,1,2]               => 29
[2,1,1,2,1]               => 78
[2,1,1,3]                 => 55
[2,1,2,1,1]               => 99
[2,1,2,2]                 => 181
[2,1,3,1]                 => 132
[2,1,4]                   => 50
[2,2,1,1,1]               => 64
[2,2,1,2]                 => 181
[2,2,2,1]                 => 272
[2,2,3]                   => 155
[2,3,1,1]                 => 111
[2,3,2]                   => 169
[2,4,1]                   => 78
[2,5]                     => 20
[3,1,1,1,1]               => 15
[3,1,1,2]                 => 55
[3,1,2,1]                 => 111
[3,1,3]                   => 71
[3,2,1,1]                 => 90
[3,2,2]                   => 155
[3,3,1]                   => 99
[3,4]                     => 34
[4,1,1,1]                 => 20
[4,1,2]                   => 50
[4,2,1]                   => 64
[4,3]                     => 34
[5,1,1]                   => 15
[5,2]                     => 20
[6,1]                     => 6
[7]                       => 1
[1,1,1,1,1,1,1,1]         => 1
[1,1,1,1,1,1,2]           => 7
[1,1,1,1,1,2,1]           => 27
[1,1,1,1,1,3]             => 21
[1,1,1,1,2,1,1]           => 55
[1,1,1,1,2,2]             => 105
[1,1,1,1,3,1]             => 85
[1,1,1,1,4]               => 35
[1,1,1,2,1,1,1]           => 69
[1,1,1,2,1,2]             => 203
[1,1,1,2,2,1]             => 323
[1,1,1,2,3]               => 189
[1,1,1,3,1,1]             => 155
[1,1,1,3,2]               => 245
[1,1,1,4,1]               => 125
[1,1,1,5]                 => 35
[1,1,2,1,1,1,1]           => 55
[1,1,2,1,1,2]             => 217
[1,1,2,1,2,1]             => 477
[1,1,2,1,3]               => 315
[1,1,2,2,1,1]             => 449
[1,1,2,2,2]               => 791
[1,1,2,3,1]               => 531
[1,1,2,4]                 => 189
[1,1,3,1,1,1]             => 155
[1,1,3,1,2]               => 413
[1,1,3,2,1]               => 573
[1,1,3,3]                 => 315
[1,1,4,1,1]               => 181
[1,1,4,2]                 => 259
[1,1,5,1]                 => 99
[1,1,6]                   => 21
[1,2,1,1,1,1,1]           => 27
[1,2,1,1,1,2]             => 133
[1,2,1,1,2,1]             => 365
[1,2,1,1,3]               => 259
[1,2,1,2,1,1]             => 477
[1,2,1,2,2]               => 875
[1,2,1,3,1]               => 643
[1,2,1,4]                 => 245
[1,2,2,1,1,1]             => 323
[1,2,2,1,2]               => 917
[1,2,2,2,1]               => 1385
[1,2,2,3]                 => 791
[1,2,3,1,1]               => 573
[1,2,3,2]                 => 875
[1,2,4,1]                 => 407
[1,2,5]                   => 105
[1,3,1,1,1,1]             => 85
[1,3,1,1,2]               => 315
[1,3,1,2,1]               => 643
[1,3,1,3]                 => 413
[1,3,2,1,1]               => 531
[1,3,2,2]                 => 917
[1,3,3,1]                 => 589
[1,3,4]                   => 203
[1,4,1,1,1]               => 125
[1,4,1,2]                 => 315
[1,4,2,1]                 => 407
[1,4,3]                   => 217
[1,5,1,1]                 => 99
[1,5,2]                   => 133
[1,6,1]                   => 41
[1,7]                     => 7
[2,1,1,1,1,1,1]           => 7
[2,1,1,1,1,2]             => 41
[2,1,1,1,2,1]             => 133
[2,1,1,1,3]               => 99
[2,1,1,2,1,1]             => 217
[2,1,1,2,2]               => 407
[2,1,1,3,1]               => 315
[2,1,1,4]                 => 125
[2,1,2,1,1,1]             => 203
[2,1,2,1,2]               => 589
[2,1,2,2,1]               => 917
[2,1,2,3]                 => 531
[2,1,3,1,1]               => 413
[2,1,3,2]                 => 643
[2,1,4,1]                 => 315
[2,1,5]                   => 85
[2,2,1,1,1,1]             => 105
[2,2,1,1,2]               => 407
[2,2,1,2,1]               => 875
[2,2,1,3]                 => 573
[2,2,2,1,1]               => 791
[2,2,2,2]                 => 1385
[2,2,3,1]                 => 917
[2,2,4]                   => 323
[2,3,1,1,1]               => 245
[2,3,1,2]                 => 643
[2,3,2,1]                 => 875
[2,3,3]                   => 477
[2,4,1,1]                 => 259
[2,4,2]                   => 365
[2,5,1]                   => 133
[2,6]                     => 27
[3,1,1,1,1,1]             => 21
[3,1,1,1,2]               => 99
[3,1,1,2,1]               => 259
[3,1,1,3]                 => 181
[3,1,2,1,1]               => 315
[3,1,2,2]                 => 573
[3,1,3,1]                 => 413
[3,1,4]                   => 155
[3,2,1,1,1]               => 189
[3,2,1,2]                 => 531
[3,2,2,1]                 => 791
[3,2,3]                   => 449
[3,3,1,1]                 => 315
[3,3,2]                   => 477
[3,4,1]                   => 217
[3,5]                     => 55
[4,1,1,1,1]               => 35
[4,1,1,2]                 => 125
[4,1,2,1]                 => 245
[4,1,3]                   => 155
[4,2,1,1]                 => 189
[4,2,2]                   => 323
[4,3,1]                   => 203
[4,4]                     => 69
[5,1,1,1]                 => 35
[5,1,2]                   => 85
[5,2,1]                   => 105
[5,3]                     => 55
[6,1,1]                   => 21
[6,2]                     => 27
[7,1]                     => 7
[8]                       => 1
[1,1,1,1,1,1,1,1,1]       => 1
[1,1,1,1,1,1,1,2]         => 8
[1,1,1,1,1,1,2,1]         => 35
[1,1,1,1,1,1,3]           => 28
[1,1,1,1,1,2,1,1]         => 83
[1,1,1,1,1,2,2]           => 160
[1,1,1,1,1,3,1]           => 133
[1,1,1,1,1,4]             => 56
[1,1,1,1,2,1,1,1]         => 125
[1,1,1,1,2,1,2]           => 370
[1,1,1,1,2,2,1]           => 595
[1,1,1,1,2,3]             => 350
[1,1,1,1,3,1,1]           => 295
[1,1,1,1,3,2]             => 470
[1,1,1,1,4,1]             => 245
[1,1,1,1,5]               => 70
[1,1,1,2,1,1,1,1]         => 125
[1,1,1,2,1,1,2]           => 496
[1,1,1,2,1,2,1]           => 1099
[1,1,1,2,1,3]             => 728
[1,1,1,2,2,1,1]           => 1051
[1,1,1,2,2,2]             => 1856
[1,1,1,2,3,1]             => 1253
[1,1,1,2,4]               => 448
[1,1,1,3,1,1,1]           => 379
[1,1,1,3,1,2]             => 1016
[1,1,1,3,2,1]             => 1421
[1,1,1,3,3]               => 784
[1,1,1,4,1,1]             => 461
[1,1,1,4,2]               => 664
[1,1,1,5,1]               => 259
[1,1,1,6]                 => 56
[1,1,2,1,1,1,1,1]         => 83
[1,1,2,1,1,1,2]           => 412
[1,1,2,1,1,2,1]           => 1141
[1,1,2,1,1,3]             => 812
[1,1,2,1,2,1,1]           => 1513
[1,1,2,1,2,2]             => 2780
[1,1,2,1,3,1]             => 2051
[1,1,2,1,4]               => 784
[1,1,2,2,1,1,1]           => 1051
[1,1,2,2,1,2]             => 2990
[1,1,2,2,2,1]             => 4529
[1,1,2,2,3]               => 2590
[1,1,2,3,1,1]             => 1889
[1,1,2,3,2]               => 2890
[1,1,2,4,1]               => 1351
[1,1,2,5]                 => 350
[1,1,3,1,1,1,1]           => 295
[1,1,3,1,1,2]             => 1100
[1,1,3,1,2,1]             => 2261
[1,1,3,1,3]               => 1456
[1,1,3,2,1,1]             => 1889
[1,1,3,2,2]               => 3268
[1,1,3,3,1]               => 2107
[1,1,3,4]                 => 728
[1,1,4,1,1,1]             => 461
[1,1,4,1,2]               => 1168
[1,1,4,2,1]               => 1519
[1,1,4,3]                 => 812
[1,1,5,1,1]               => 379
[1,1,5,2]                 => 512
[1,1,6,1]                 => 161
[1,1,7]                   => 28
[1,2,1,1,1,1,1,1]         => 35
[1,2,1,1,1,1,2]           => 208
[1,2,1,1,1,2,1]           => 685
[1,2,1,1,1,3]             => 512
[1,2,1,1,2,1,1]           => 1141
[1,2,1,1,2,2]             => 2144
[1,2,1,1,3,1]             => 1667
[1,2,1,1,4]               => 664
[1,2,1,2,1,1,1]           => 1099
[1,2,1,2,1,2]             => 3194
[1,2,1,2,2,1]             => 4985
[1,2,1,2,3]               => 2890
[1,2,1,3,1,1]             => 2261
[1,2,1,3,2]               => 3526
[1,2,1,4,1]               => 1735
[1,2,1,5]                 => 470
[1,2,2,1,1,1,1]           => 595
[1,2,2,1,1,2]             => 2312
[1,2,2,1,2,1]             => 4985
[1,2,2,1,3]               => 3268
[1,2,2,2,1,1]             => 4529
[1,2,2,2,2]               => 7936
[1,2,2,3,1]               => 5263
[1,2,2,4]                 => 1856
[1,2,3,1,1,1]             => 1421
[1,2,3,1,2]               => 3736
[1,2,3,2,1]               => 5095
[1,2,3,3]                 => 2780
[1,2,4,1,1]               => 1519
[1,2,4,2]                 => 2144
[1,2,5,1]                 => 785
[1,2,6]                   => 160
[1,3,1,1,1,1,1]           => 133
[1,3,1,1,1,2]             => 632
[1,3,1,1,2,1]             => 1667
[1,3,1,1,3]               => 1168
[1,3,1,2,1,1]             => 2051
[1,3,1,2,2]               => 3736
[1,3,1,3,1]               => 2701
[1,3,1,4]                 => 1016
[1,3,2,1,1,1]             => 1253
[1,3,2,1,2]               => 3526
[1,3,2,2,1]               => 5263
[1,3,2,3]                 => 2990
[1,3,3,1,1]               => 2107
[1,3,3,2]                 => 3194
[1,3,4,1]                 => 1457
[1,3,5]                   => 370
[1,4,1,1,1,1]             => 245
[1,4,1,1,2]               => 880
[1,4,1,2,1]               => 1735
[1,4,1,3]                 => 1100
[1,4,2,1,1]               => 1351
[1,4,2,2]                 => 2312
[1,4,3,1]                 => 1457
[1,4,4]                   => 496
[1,5,1,1,1]               => 259
[1,5,1,2]                 => 632
[1,5,2,1]                 => 785
[1,5,3]                   => 412
[1,6,1,1]                 => 161
[1,6,2]                   => 208
[1,7,1]                   => 55
[1,8]                     => 8
[2,1,1,1,1,1,1,1]         => 8
[2,1,1,1,1,1,2]           => 55
[2,1,1,1,1,2,1]           => 208
[2,1,1,1,1,3]             => 161
[2,1,1,1,2,1,1]           => 412
[2,1,1,1,2,2]             => 785
[2,1,1,1,3,1]             => 632
[2,1,1,1,4]               => 259
[2,1,1,2,1,1,1]           => 496
[2,1,1,2,1,2]             => 1457
[2,1,1,2,2,1]             => 2312
[2,1,1,2,3]               => 1351
[2,1,1,3,1,1]             => 1100
[2,1,1,3,2]               => 1735
[2,1,1,4,1]               => 880
[2,1,1,5]                 => 245
[2,1,2,1,1,1,1]           => 370
[2,1,2,1,1,2]             => 1457
[2,1,2,1,2,1]             => 3194
[2,1,2,1,3]               => 2107
[2,1,2,2,1,1]             => 2990
[2,1,2,2,2]               => 5263
[2,1,2,3,1]               => 3526
[2,1,2,4]                 => 1253
[2,1,3,1,1,1]             => 1016
[2,1,3,1,2]               => 2701
[2,1,3,2,1]               => 3736
[2,1,3,3]                 => 2051
[2,1,4,1,1]               => 1168
[2,1,4,2]                 => 1667
[2,1,5,1]                 => 632
[2,1,6]                   => 133
[2,2,1,1,1,1,1]           => 160
[2,2,1,1,1,2]             => 785
[2,2,1,1,2,1]             => 2144
[2,2,1,1,3]               => 1519
[2,2,1,2,1,1]             => 2780
[2,2,1,2,2]               => 5095
[2,2,1,3,1]               => 3736
[2,2,1,4]                 => 1421
[2,2,2,1,1,1]             => 1856
[2,2,2,1,2]               => 5263
[2,2,2,2,1]               => 7936
[2,2,2,3]                 => 4529
[2,2,3,1,1]               => 3268
[2,2,3,2]                 => 4985
[2,2,4,1]                 => 2312
[2,2,5]                   => 595
[2,3,1,1,1,1]             => 470
[2,3,1,1,2]               => 1735
[2,3,1,2,1]               => 3526
[2,3,1,3]                 => 2261
[2,3,2,1,1]               => 2890
[2,3,2,2]                 => 4985
[2,3,3,1]                 => 3194
[2,3,4]                   => 1099
[2,4,1,1,1]               => 664
[2,4,1,2]                 => 1667
[2,4,2,1]                 => 2144
[2,4,3]                   => 1141
[2,5,1,1]                 => 512
[2,5,2]                   => 685
[2,6,1]                   => 208
[2,7]                     => 35
[3,1,1,1,1,1,1]           => 28
[3,1,1,1,1,2]             => 161
[3,1,1,1,2,1]             => 512
[3,1,1,1,3]               => 379
[3,1,1,2,1,1]             => 812
[3,1,1,2,2]               => 1519
[3,1,1,3,1]               => 1168
[3,1,1,4]                 => 461
[3,1,2,1,1,1]             => 728
[3,1,2,1,2]               => 2107
[3,1,2,2,1]               => 3268
[3,1,2,3]                 => 1889
[3,1,3,1,1]               => 1456
[3,1,3,2]                 => 2261
[3,1,4,1]                 => 1100
[3,1,5]                   => 295
[3,2,1,1,1,1]             => 350
[3,2,1,1,2]               => 1351
[3,2,1,2,1]               => 2890
[3,2,1,3]                 => 1889
[3,2,2,1,1]               => 2590
[3,2,2,2]                 => 4529
[3,2,3,1]                 => 2990
[3,2,4]                   => 1051
[3,3,1,1,1]               => 784
[3,3,1,2]                 => 2051
[3,3,2,1]                 => 2780
[3,3,3]                   => 1513
[3,4,1,1]                 => 812
[3,4,2]                   => 1141
[3,5,1]                   => 412
[3,6]                     => 83
[4,1,1,1,1,1]             => 56
[4,1,1,1,2]               => 259
[4,1,1,2,1]               => 664
[4,1,1,3]                 => 461
[4,1,2,1,1]               => 784
[4,1,2,2]                 => 1421
[4,1,3,1]                 => 1016
[4,1,4]                   => 379
[4,2,1,1,1]               => 448
[4,2,1,2]                 => 1253
[4,2,2,1]                 => 1856
[4,2,3]                   => 1051
[4,3,1,1]                 => 728
[4,3,2]                   => 1099
[4,4,1]                   => 496
[4,5]                     => 125
[5,1,1,1,1]               => 70
[5,1,1,2]                 => 245
[5,1,2,1]                 => 470
[5,1,3]                   => 295
[5,2,1,1]                 => 350
[5,2,2]                   => 595
[5,3,1]                   => 370
[5,4]                     => 125
[6,1,1,1]                 => 56
[6,1,2]                   => 133
[6,2,1]                   => 160
[6,3]                     => 83
[7,1,1]                   => 28
[7,2]                     => 35
[8,1]                     => 8
[9]                       => 1
[1,1,1,1,1,1,1,1,1,1]     => 1
[1,1,1,1,1,1,2,2]         => 231
[1,1,1,1,2,1,1,2]         => 999
[1,1,1,1,2,2,1,1]         => 2149
[1,1,1,1,3,3]             => 1674
[1,1,1,1,5,1]             => 574
[1,1,2,1,1,1,1,2]         => 711
[1,1,2,1,1,2,1,1]         => 3961
[1,1,2,1,2,3]             => 10206
[1,1,2,2,1,1,1,1]         => 2149
[1,1,2,2,2,2]             => 28839
[1,1,3,1,1,3]             => 4536
[1,1,3,2,1,2]             => 13941
[1,1,3,3,1,1]             => 8371
[1,1,4,4]                 => 2064
[1,1,7,1]                 => 244
[1,2,1,1,4,1]             => 5191
[1,2,6,1]                 => 1369
[1,3,1,1,3,1]             => 8371
[1,3,5,1]                 => 3079
[1,4,1,1,2,1]             => 5191
[1,4,4,1]                 => 3961
[1,5,1,1,1,1]             => 574
[1,5,3,1]                 => 3079
[1,6,1,2]                 => 1134
[1,6,2,1]                 => 1369
[1,7,1,1]                 => 244
[1,8,1]                   => 71
[1,9]                     => 9
[2,1,1,1,1,1,1,2]         => 71
[2,1,1,1,1,2,1,1]         => 711
[2,1,1,1,2,3]             => 2906
[2,1,1,2,1,1,1,1]         => 999
[2,1,1,2,2,2]             => 14759
[2,1,2,1,1,3]             => 6056
[2,1,2,2,1,2]             => 22121
[2,1,2,3,1,1]             => 13941
[2,1,3,4]                 => 5264
[2,1,6,1]                 => 1134
[2,2,1,1,1,1,1,1]         => 231
[2,2,1,1,2,2]             => 13991
[2,2,2,1,1,2]             => 14759
[2,2,2,2,1,1]             => 28839
[2,2,3,3]                 => 17594
[3,1,1,1,1,3]             => 701
[3,1,1,2,1,2]             => 6056
[3,1,1,3,1,1]             => 4536
[3,1,2,4]                 => 4949
[3,2,1,1,1,2]             => 2906
[3,2,1,2,1,1]             => 10206
[3,2,2,3]                 => 16451
[3,3,1,1,1,1]             => 1674
[3,3,2,2]                 => 17594
[4,1,1,4]                 => 1301
[4,2,1,3]                 => 4949
[4,3,1,2]                 => 5264
[4,4,1,1]                 => 2064
[5,5]                     => 251
[8,1,1]                   => 36
[9,1]                     => 9
[1,10]                    => 10
[1,8,1,1]                 => 351
[1,7,2,1]                 => 2221
[1,6,3,1]                 => 5851
[1,5,4,1]                 => 9151
[1,4,5,1]                 => 9151
[1,3,6,1]                 => 5851
[1,2,7,1]                 => 2221
[1,1,8,1]                 => 351
[10,1]                    => 10
[1,1,1,1,1,1,1,1,1,1,1,1] => 1
[1,1,1,1,1,1,1,1,2,2]     => 429
[1,1,1,1,1,1,2,2,1,1]     => 6909
[1,1,1,1,1,1,2,1,1,2]     => 3157
[1,1,1,1,1,1,3,3]         => 5698
[1,1,1,1,2,2,1,1,1,1]     => 15049
[1,1,1,1,2,2,2,2]         => 203181
[1,1,1,1,2,1,1,2,1,1]     => 26709
[1,1,1,1,2,1,1,1,1,2]     => 4741
[1,1,1,1,2,1,2,3]         => 69850
[1,1,1,1,3,3,1,1]         => 65154
[1,1,1,1,3,2,1,2]         => 107866
[1,1,1,1,3,1,1,3]         => 34375
[1,1,1,1,4,4]             => 16995
[1,1,2,2,1,1,1,1,1,1]     => 6909
[1,1,2,2,1,1,2,2]         => 421421
[1,1,2,2,2,2,1,1]         => 880529
[1,1,2,2,2,1,1,2]         => 450021
[1,1,2,2,3,3]             => 538890
[1,1,2,1,1,2,1,1,1,1]     => 26709
[1,1,2,1,1,2,2,2]         => 396077
[1,1,2,1,1,1,1,2,1,1]     => 18041
[1,1,2,1,1,1,1,1,1,2]     => 1749
[1,1,2,1,1,1,2,3]         => 75570
[1,1,2,1,2,3,1,1]         => 392822
[1,1,2,1,2,2,1,2]         => 622314
[1,1,2,1,2,1,1,3]         => 169455
[1,1,2,1,3,4]             => 150227
[1,1,3,3,1,1,1,1]         => 65154
[1,1,3,3,2,2]             => 686906
[1,1,3,2,1,2,1,1]         => 392822
[1,1,3,2,1,1,1,2]         => 111474
[1,1,3,2,2,3]             => 635745
[1,1,3,1,1,3,1,1]         => 166541
[1,1,3,1,1,2,1,2]         => 221529
[1,1,3,1,1,1,1,3]         => 25080
[1,1,3,1,2,4]             => 185108
[1,1,4,4,1,1]             => 90509
[1,1,4,3,1,2]             => 230241
[1,1,4,2,1,3]             => 215160
[1,1,4,1,1,4]             => 55220
[1,1,5,5]                 => 11825
[2,2,1,1,1,1,1,1,1,1]     => 429
[2,2,1,1,1,1,2,2]         => 66989
[2,2,1,1,2,2,1,1]         => 421421
[2,2,1,1,2,1,1,2]         => 199341
[2,2,1,1,3,3]             => 312102
[2,2,2,2,1,1,1,1]         => 203181
[2,2,2,2,2,2]             => 2702765
[2,2,2,1,1,2,1,1]         => 396077
[2,2,2,1,1,1,1,2]         => 72621
[2,2,2,1,2,3]             => 996390
[2,2,3,3,1,1]             => 686906
[2,2,3,2,1,2]             => 1152546
[2,2,3,1,1,3]             => 385395
[2,2,4,4]                 => 157475
[2,1,1,2,1,1,1,1,1,1]     => 3157
[2,1,1,2,1,1,2,2]         => 199341
[2,1,1,2,2,2,1,1]         => 450021
[2,1,1,2,2,1,1,2]         => 228205
[2,1,1,2,3,3]             => 280774
[2,1,1,1,1,2,1,1,1,1]     => 4741
[2,1,1,1,1,2,2,2]         => 72621
[2,1,1,1,1,1,1,2,1,1]     => 1749
[2,1,1,1,1,1,1,1,1,2]     => 109
[2,1,1,1,1,1,2,3]         => 9910
[2,1,1,1,2,3,1,1]         => 111474
[2,1,1,1,2,2,1,2]         => 174514
[2,1,1,1,2,1,1,3]         => 45715
[2,1,1,1,3,4]             => 46947
[2,1,2,3,1,1,1,1]         => 107866
[2,1,2,3,2,2]             => 1152546
[2,1,2,2,1,2,1,1]         => 622314
[2,1,2,2,1,1,1,2]         => 174514
[2,1,2,2,2,3]             => 1022845
[2,1,2,1,1,3,1,1]         => 221529
[2,1,2,1,1,2,1,2]         => 291169
[2,1,2,1,1,1,1,3]         => 30700
[2,1,2,1,2,4]             => 262932
[2,1,3,4,1,1]             => 230241
[2,1,3,3,1,2]             => 578665
[2,1,3,2,1,3]             => 527284
[2,1,3,1,1,4]             => 123540
[2,1,4,5]                 => 39225
[3,3,1,1,1,1,1,1]         => 5698
[3,3,1,1,2,2]             => 312102
[3,3,2,2,1,1]             => 538890
[3,3,2,1,1,2]             => 280774
[3,3,3,3]                 => 315523
[3,2,1,2,1,1,1,1]         => 69850
[3,2,1,2,2,2]             => 996390
[3,2,1,1,1,2,1,1]         => 75570
[3,2,1,1,1,1,1,2]         => 9910
[3,2,1,1,2,3]             => 251371
[3,2,2,3,1,1]             => 635745
[3,2,2,2,1,2]             => 1022845
[3,2,2,1,1,3]             => 294106
[3,2,3,4]                 => 215346
[3,1,1,3,1,1,1,1]         => 34375
[3,1,1,3,2,2]             => 385395
[3,1,1,2,1,2,1,1]         => 169455
[3,1,1,2,1,1,1,2]         => 45715
[3,1,1,2,2,3]             => 294106
[3,1,1,1,1,3,1,1]         => 25080
[3,1,1,1,1,2,1,2]         => 30700
[3,1,1,1,1,1,1,3]         => 1891
[3,1,1,1,2,4]             => 43251
[3,1,2,4,1,1]             => 215160
[3,1,2,3,1,2]             => 527284
[3,1,2,2,1,3]             => 458083
[3,1,2,1,1,4]             => 90771
[3,1,3,5]                 => 54966
[4,4,1,1,1,1]             => 16995
[4,4,2,2]                 => 157475
[4,3,1,2,1,1]             => 150227
[4,3,1,1,1,2]             => 46947
[4,3,2,3]                 => 215346
[4,2,1,3,1,1]             => 185108
[4,2,1,2,1,2]             => 262932
[4,2,1,1,1,3]             => 43251
[4,2,2,4]                 => 147443
[4,1,1,4,1,1]             => 55220
[4,1,1,3,1,2]             => 123540
[4,1,1,2,1,3]             => 90771
[4,1,1,1,1,4]             => 8051
[4,1,2,5]                 => 36926
[5,5,1,1]                 => 11825
[5,4,1,2]                 => 39225
[5,3,1,3]                 => 54966
[5,2,1,4]                 => 36926
[5,1,1,5]                 => 8051
[6,6]                     => 923

-----------------------------------------------------------------------------
Created: Sep 11, 2015 at 21:12 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: May 20, 2021 at 17:25 by Martin Rubey