Identifier
Values
([],1) => ([],1) => ([],1) => ([],1) => 0
([],2) => ([],2) => ([],1) => ([],1) => 0
([(0,1)],2) => ([],1) => ([],1) => ([],1) => 0
([],3) => ([],3) => ([],1) => ([],1) => 0
([(1,2)],3) => ([],2) => ([],1) => ([],1) => 0
([(0,1),(0,2),(1,2)],3) => ([],1) => ([],1) => ([],1) => 0
([],4) => ([],4) => ([],1) => ([],1) => 0
([(2,3)],4) => ([],3) => ([],1) => ([],1) => 0
([(0,3),(1,2)],4) => ([],2) => ([],1) => ([],1) => 0
([(1,2),(1,3),(2,3)],4) => ([],2) => ([],1) => ([],1) => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],1) => ([],1) => ([],1) => 0
([],5) => ([],5) => ([],1) => ([],1) => 0
([(3,4)],5) => ([],4) => ([],1) => ([],1) => 0
([(1,4),(2,3)],5) => ([],3) => ([],1) => ([],1) => 0
([(2,3),(2,4),(3,4)],5) => ([],3) => ([],1) => ([],1) => 0
([(0,1),(2,3),(2,4),(3,4)],5) => ([],2) => ([],1) => ([],1) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],2) => ([],1) => ([],1) => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],1) => ([],1) => ([],1) => 0
([],6) => ([],6) => ([],1) => ([],1) => 0
([(4,5)],6) => ([],5) => ([],1) => ([],1) => 0
([(2,5),(3,4)],6) => ([],4) => ([],1) => ([],1) => 0
([(3,4),(3,5),(4,5)],6) => ([],4) => ([],1) => ([],1) => 0
([(0,5),(1,4),(2,3)],6) => ([],3) => ([],1) => ([],1) => 0
([(1,2),(3,4),(3,5),(4,5)],6) => ([],3) => ([],1) => ([],1) => 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([],3) => ([],1) => ([],1) => 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([],2) => ([],1) => ([],1) => 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([],2) => ([],1) => ([],1) => 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([],2) => ([],1) => ([],1) => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([],1) => ([],1) => ([],1) => 0
([(5,6)],7) => ([],6) => ([],1) => ([],1) => 0
([(3,6),(4,5)],7) => ([],5) => ([],1) => ([],1) => 0
([(4,5),(4,6),(5,6)],7) => ([],5) => ([],1) => ([],1) => 0
([(1,6),(2,5),(3,4)],7) => ([],4) => ([],1) => ([],1) => 0
([(2,3),(4,5),(4,6),(5,6)],7) => ([],4) => ([],1) => ([],1) => 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],4) => ([],1) => ([],1) => 0
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => ([],3) => ([],1) => ([],1) => 0
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => ([],3) => ([],1) => ([],1) => 0
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],3) => ([],1) => ([],1) => 0
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],3) => ([],1) => ([],1) => 0
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],2) => ([],1) => ([],1) => 0
([(0,1),(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],2) => ([],1) => ([],1) => 0
([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],2) => ([],1) => ([],1) => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],1) => ([],1) => ([],1) => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
This is the greatest distance between any pair of vertices.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
Map
core
Description
The core of a graph.
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
Map
clique graph
Description
The clique graph of a graph.
The clique graph of a graph G has as vertex set the set of maximal cliques G and an edge between vertices corresponding to cliques that intersect.
In other words, it is the intersection graph of the maximal cliques of G.
The clique graph of a graph G has as vertex set the set of maximal cliques G and an edge between vertices corresponding to cliques that intersect.
In other words, it is the intersection graph of the maximal cliques of G.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!