Identifier
-
Mp00137:
Dyck paths
—to symmetric ASM⟶
Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
St000213: Permutations ⟶ ℤ
Values
[1,0] => [[1]] => [1] => [1] => 1
[1,0,1,0] => [[1,0],[0,1]] => [1,2] => [2,1] => 1
[1,1,0,0] => [[0,1],[1,0]] => [2,1] => [1,2] => 2
[1,0,1,0,1,0] => [[1,0,0],[0,1,0],[0,0,1]] => [1,2,3] => [2,3,1] => 2
[1,0,1,1,0,0] => [[1,0,0],[0,0,1],[0,1,0]] => [1,3,2] => [2,1,3] => 2
[1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => [2,1,3] => [3,2,1] => 2
[1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => [1,3,2] => [2,1,3] => 2
[1,1,1,0,0,0] => [[0,0,1],[0,1,0],[1,0,0]] => [3,2,1] => [1,2,3] => 3
[1,0,1,0,1,0,1,0] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [1,2,3,4] => [2,3,4,1] => 3
[1,0,1,0,1,1,0,0] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [1,2,4,3] => [2,3,1,4] => 3
[1,0,1,1,0,0,1,0] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [1,3,2,4] => [2,4,3,1] => 3
[1,0,1,1,0,1,0,0] => [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [1,2,4,3] => [2,3,1,4] => 3
[1,0,1,1,1,0,0,0] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => [1,4,3,2] => [2,1,3,4] => 3
[1,1,0,0,1,0,1,0] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [2,1,3,4] => [3,2,4,1] => 3
[1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [2,1,4,3] => [3,2,1,4] => 3
[1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [1,3,2,4] => [2,4,3,1] => 3
[1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [1,2,4,3] => [2,3,1,4] => 3
[1,1,0,1,1,0,0,0] => [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]] => [1,4,3,2] => [2,1,3,4] => 3
[1,1,1,0,0,0,1,0] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => [3,2,1,4] => [4,3,2,1] => 2
[1,1,1,0,0,1,0,0] => [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]] => [2,1,4,3] => [3,2,1,4] => 3
[1,1,1,0,1,0,0,0] => [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => [1,4,3,2] => [2,1,3,4] => 3
[1,1,1,1,0,0,0,0] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => [4,3,2,1] => [1,2,3,4] => 4
[1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,2,3,4,5] => [2,3,4,5,1] => 4
[1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [1,2,3,5,4] => [2,3,4,1,5] => 4
[1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [1,2,4,3,5] => [2,3,5,4,1] => 4
[1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,2,3,5,4] => [2,3,4,1,5] => 4
[1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => [2,3,1,4,5] => 4
[1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,3,2,4,5] => [2,4,3,5,1] => 4
[1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [1,3,2,5,4] => [2,4,3,1,5] => 4
[1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [1,2,4,3,5] => [2,3,5,4,1] => 4
[1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,2,3,5,4] => [2,3,4,1,5] => 4
[1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => [2,3,1,4,5] => 4
[1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [1,4,3,2,5] => [2,5,4,3,1] => 3
[1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,3,2,5,4] => [2,4,3,1,5] => 4
[1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => [2,3,1,4,5] => 4
[1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => [2,1,3,4,5] => 4
[1,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [2,1,3,4,5] => [3,2,4,5,1] => 4
[1,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [2,1,3,5,4] => [3,2,4,1,5] => 4
[1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [2,1,4,3,5] => [3,2,5,4,1] => 4
[1,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [2,1,3,5,4] => [3,2,4,1,5] => 4
[1,1,0,0,1,1,1,0,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [2,1,5,4,3] => [3,2,1,4,5] => 4
[1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,3,2,4,5] => [2,4,3,5,1] => 4
[1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [1,3,2,5,4] => [2,4,3,1,5] => 4
[1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [1,2,4,3,5] => [2,3,5,4,1] => 4
[1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,2,3,5,4] => [2,3,4,1,5] => 4
[1,1,0,1,0,1,1,0,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => [2,3,1,4,5] => 4
[1,1,0,1,1,0,0,0,1,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [1,4,3,2,5] => [2,5,4,3,1] => 3
[1,1,0,1,1,0,0,1,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,3,2,5,4] => [2,4,3,1,5] => 4
[1,1,0,1,1,0,1,0,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => [2,3,1,4,5] => 4
[1,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => [2,1,3,4,5] => 4
[1,1,1,0,0,0,1,0,1,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [3,2,1,4,5] => [4,3,2,5,1] => 3
[1,1,1,0,0,0,1,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [3,2,1,5,4] => [4,3,2,1,5] => 3
[1,1,1,0,0,1,0,0,1,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [2,1,4,3,5] => [3,2,5,4,1] => 4
[1,1,1,0,0,1,0,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [2,1,3,5,4] => [3,2,4,1,5] => 4
[1,1,1,0,0,1,1,0,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [2,1,5,4,3] => [3,2,1,4,5] => 4
[1,1,1,0,1,0,0,0,1,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [1,4,3,2,5] => [2,5,4,3,1] => 3
[1,1,1,0,1,0,0,1,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,3,2,5,4] => [2,4,3,1,5] => 4
[1,1,1,0,1,0,1,0,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => [2,3,1,4,5] => 4
[1,1,1,0,1,1,0,0,0,0] => [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => [2,1,3,4,5] => 4
[1,1,1,1,0,0,0,0,1,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]] => [4,3,2,1,5] => [5,4,3,2,1] => 3
[1,1,1,1,0,0,0,1,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]] => [3,2,1,5,4] => [4,3,2,1,5] => 3
[1,1,1,1,0,0,1,0,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]] => [2,1,5,4,3] => [3,2,1,4,5] => 4
[1,1,1,1,0,1,0,0,0,0] => [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => [2,1,3,4,5] => 4
[1,1,1,1,1,0,0,0,0,0] => [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]] => [5,4,3,2,1] => [1,2,3,4,5] => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,2,3,4,6,5] => [2,3,4,5,1,6] => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,2,3,5,4,6] => [2,3,4,6,5,1] => 5
[1,0,1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [1,2,3,4,6,5] => [2,3,4,5,1,6] => 5
[1,0,1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => [2,3,4,1,5,6] => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [1,2,4,3,5,6] => [2,3,5,4,6,1] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,2,4,3,6,5] => [2,3,5,4,1,6] => 5
[1,0,1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,2,3,5,4,6] => [2,3,4,6,5,1] => 5
[1,0,1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [1,2,3,4,6,5] => [2,3,4,5,1,6] => 5
[1,0,1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => [2,3,4,1,5,6] => 5
[1,0,1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,2,5,4,3,6] => [2,3,6,5,4,1] => 4
[1,0,1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => [1,2,4,3,6,5] => [2,3,5,4,1,6] => 5
[1,0,1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => [2,3,4,1,5,6] => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => [1,2,6,5,4,3] => [2,3,1,4,5,6] => 5
[1,0,1,1,0,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [1,3,2,4,5,6] => [2,4,3,5,6,1] => 5
[1,0,1,1,0,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,3,2,4,6,5] => [2,4,3,5,1,6] => 5
[1,0,1,1,0,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,3,2,5,4,6] => [2,4,3,6,5,1] => 5
[1,0,1,1,0,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [1,3,2,4,6,5] => [2,4,3,5,1,6] => 5
[1,0,1,1,0,0,1,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => [1,3,2,6,5,4] => [2,4,3,1,5,6] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [1,2,4,3,5,6] => [2,3,5,4,6,1] => 5
[1,0,1,1,0,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,2,4,3,6,5] => [2,3,5,4,1,6] => 5
[1,0,1,1,0,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,2,3,5,4,6] => [2,3,4,6,5,1] => 5
[1,0,1,1,0,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [1,2,3,4,6,5] => [2,3,4,5,1,6] => 5
[1,0,1,1,0,1,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => [2,3,4,1,5,6] => 5
[1,0,1,1,0,1,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,2,5,4,3,6] => [2,3,6,5,4,1] => 4
[1,0,1,1,0,1,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => [1,2,4,3,6,5] => [2,3,5,4,1,6] => 5
[1,0,1,1,0,1,1,0,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => [2,3,4,1,5,6] => 5
[1,0,1,1,0,1,1,1,0,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => [1,2,6,5,4,3] => [2,3,1,4,5,6] => 5
[1,0,1,1,1,0,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [1,4,3,2,5,6] => [2,5,4,3,6,1] => 4
[1,0,1,1,1,0,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,4,3,2,6,5] => [2,5,4,3,1,6] => 4
[1,0,1,1,1,0,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,3,2,5,4,6] => [2,4,3,6,5,1] => 5
[1,0,1,1,1,0,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [1,3,2,4,6,5] => [2,4,3,5,1,6] => 5
[1,0,1,1,1,0,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => [1,3,2,6,5,4] => [2,4,3,1,5,6] => 5
[1,0,1,1,1,0,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,2,5,4,3,6] => [2,3,6,5,4,1] => 4
[1,0,1,1,1,0,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => [1,2,4,3,6,5] => [2,3,5,4,1,6] => 5
[1,0,1,1,1,0,1,0,1,0,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => [2,3,4,1,5,6] => 5
[1,0,1,1,1,0,1,1,0,0,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => [1,2,6,5,4,3] => [2,3,1,4,5,6] => 5
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of weak exceedances (also weak excedences) of a permutation.
This is defined as
$$\operatorname{wex}(\sigma)=\#\{i:\sigma(i) \geq i\}.$$
The number of weak exceedances is given by the number of exceedances (see St000155The number of exceedances (also excedences) of a permutation.) plus the number of fixed points (see St000022The number of fixed points of a permutation.) of $\sigma$.
This is defined as
$$\operatorname{wex}(\sigma)=\#\{i:\sigma(i) \geq i\}.$$
The number of weak exceedances is given by the number of exceedances (see St000155The number of exceedances (also excedences) of a permutation.) plus the number of fixed points (see St000022The number of fixed points of a permutation.) of $\sigma$.
Map
to symmetric ASM
Description
The diagonally symmetric alternating sign matrix corresponding to a Dyck path.
Map
to left key permutation
Description
Return the permutation of the left key of an alternating sign matrix.
This was originally defined by Lascoux and then further studied by Aval [1].
This was originally defined by Lascoux and then further studied by Aval [1].
Map
Lehmer code rotation
Description
Sends a permutation $\pi$ to the unique permutation $\tau$ (of the same length) such that every entry in the Lehmer code of $\tau$ is cyclically one larger than the Lehmer code of $\pi$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!