*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000205

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight.

Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.




-----------------------------------------------------------------------------
References: [1]  De Loera, Jesús A., McAllister, T. B. Vertices of Gelfand-Tsetlin polytopes [[MathSciNet:2096742]]

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

[1]               => 0
[2]               => 0
[1,1]             => 0
[3]               => 0
[2,1]             => 0
[1,1,1]           => 0
[4]               => 0
[3,1]             => 0
[2,2]             => 0
[2,1,1]           => 0
[1,1,1,1]         => 0
[5]               => 0
[4,1]             => 0
[3,2]             => 1
[3,1,1]           => 0
[2,2,1]           => 1
[2,1,1,1]         => 0
[1,1,1,1,1]       => 0
[6]               => 0
[5,1]             => 0
[4,2]             => 1
[4,1,1]           => 0
[3,3]             => 1
[3,2,1]           => 2
[3,1,1,1]         => 0
[2,2,2]           => 1
[2,2,1,1]         => 1
[2,1,1,1,1]       => 0
[1,1,1,1,1,1]     => 0
[7]               => 0
[6,1]             => 0
[5,2]             => 1
[5,1,1]           => 0
[4,3]             => 3
[4,2,1]           => 4
[4,1,1,1]         => 0
[3,3,1]           => 3
[3,2,2]           => 2
[3,2,1,1]         => 2
[3,1,1,1,1]       => 0
[2,2,2,1]         => 2
[2,2,1,1,1]       => 1
[2,1,1,1,1,1]     => 0
[1,1,1,1,1,1,1]   => 0
[8]               => 0
[7,1]             => 0
[6,2]             => 1
[6,1,1]           => 0
[5,3]             => 3
[5,2,1]           => 7
[5,1,1,1]         => 0
[4,4]             => 3
[4,3,1]           => 5
[4,2,2]           => 4
[4,2,1,1]         => 4
[4,1,1,1,1]       => 0
[3,3,2]           => 5
[3,3,1,1]         => 4
[3,2,2,1]         => 5
[3,2,1,1,1]       => 2
[3,1,1,1,1,1]     => 0
[2,2,2,2]         => 2
[2,2,2,1,1]       => 2
[2,2,1,1,1,1]     => 1
[2,1,1,1,1,1,1]   => 0
[1,1,1,1,1,1,1,1] => 0

-----------------------------------------------------------------------------
Created: May 19, 2014 at 11:16 by Per Alexandersson

-----------------------------------------------------------------------------
Last Updated: May 29, 2015 at 17:10 by Martin Rubey