*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000185

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The weighted size of a partition.

Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is
$$\sum_{i=0}^m i \cdot \lambda_i.$$

This is also the sum of the leg lengths of the cells in $\lambda$, or
$$
\sum_i \binom{\lambda^{\prime}_i}{2}
$$
where $\lambda^{\prime}$ is the conjugate partition of $\lambda$.

This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].

This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].

-----------------------------------------------------------------------------
References: [1]   Hohlweg, C. Minimal and maximal elements in Kazhdan-Lusztig double sided cells of $S_n$ and Robinson-Schensted correspondance [[arXiv:math/0304059]]
[2]   Stanley, R. P. Enumerative combinatorics. Vol. 2 [[MathSciNet:1676282]]

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return L.weighted_size()

-----------------------------------------------------------------------------
Statistic values:

[]                      => 0
[1]                     => 0
[2]                     => 0
[1,1]                   => 1
[3]                     => 0
[2,1]                   => 1
[1,1,1]                 => 3
[4]                     => 0
[3,1]                   => 1
[2,2]                   => 2
[2,1,1]                 => 3
[1,1,1,1]               => 6
[5]                     => 0
[4,1]                   => 1
[3,2]                   => 2
[3,1,1]                 => 3
[2,2,1]                 => 4
[2,1,1,1]               => 6
[1,1,1,1,1]             => 10
[6]                     => 0
[5,1]                   => 1
[4,2]                   => 2
[4,1,1]                 => 3
[3,3]                   => 3
[3,2,1]                 => 4
[3,1,1,1]               => 6
[2,2,2]                 => 6
[2,2,1,1]               => 7
[2,1,1,1,1]             => 10
[1,1,1,1,1,1]           => 15
[7]                     => 0
[6,1]                   => 1
[5,2]                   => 2
[5,1,1]                 => 3
[4,3]                   => 3
[4,2,1]                 => 4
[4,1,1,1]               => 6
[3,3,1]                 => 5
[3,2,2]                 => 6
[3,2,1,1]               => 7
[3,1,1,1,1]             => 10
[2,2,2,1]               => 9
[2,2,1,1,1]             => 11
[2,1,1,1,1,1]           => 15
[1,1,1,1,1,1,1]         => 21
[8]                     => 0
[7,1]                   => 1
[6,2]                   => 2
[6,1,1]                 => 3
[5,3]                   => 3
[5,2,1]                 => 4
[5,1,1,1]               => 6
[4,4]                   => 4
[4,3,1]                 => 5
[4,2,2]                 => 6
[4,2,1,1]               => 7
[4,1,1,1,1]             => 10
[3,3,2]                 => 7
[3,3,1,1]               => 8
[3,2,2,1]               => 9
[3,2,1,1,1]             => 11
[3,1,1,1,1,1]           => 15
[2,2,2,2]               => 12
[2,2,2,1,1]             => 13
[2,2,1,1,1,1]           => 16
[2,1,1,1,1,1,1]         => 21
[1,1,1,1,1,1,1,1]       => 28
[9]                     => 0
[8,1]                   => 1
[7,2]                   => 2
[7,1,1]                 => 3
[6,3]                   => 3
[6,2,1]                 => 4
[6,1,1,1]               => 6
[5,4]                   => 4
[5,3,1]                 => 5
[5,2,2]                 => 6
[5,2,1,1]               => 7
[5,1,1,1,1]             => 10
[4,4,1]                 => 6
[4,3,2]                 => 7
[4,3,1,1]               => 8
[4,2,2,1]               => 9
[4,2,1,1,1]             => 11
[4,1,1,1,1,1]           => 15
[3,3,3]                 => 9
[3,3,2,1]               => 10
[3,3,1,1,1]             => 12
[3,2,2,2]               => 12
[3,2,2,1,1]             => 13
[3,2,1,1,1,1]           => 16
[3,1,1,1,1,1,1]         => 21
[2,2,2,2,1]             => 16
[2,2,2,1,1,1]           => 18
[2,2,1,1,1,1,1]         => 22
[2,1,1,1,1,1,1,1]       => 28
[1,1,1,1,1,1,1,1,1]     => 36
[10]                    => 0
[9,1]                   => 1
[8,2]                   => 2
[8,1,1]                 => 3
[7,3]                   => 3
[7,2,1]                 => 4
[7,1,1,1]               => 6
[6,4]                   => 4
[6,3,1]                 => 5
[6,2,2]                 => 6
[6,2,1,1]               => 7
[6,1,1,1,1]             => 10
[5,5]                   => 5
[5,4,1]                 => 6
[5,3,2]                 => 7
[5,3,1,1]               => 8
[5,2,2,1]               => 9
[5,2,1,1,1]             => 11
[5,1,1,1,1,1]           => 15
[4,4,2]                 => 8
[4,4,1,1]               => 9
[4,3,3]                 => 9
[4,3,2,1]               => 10
[4,3,1,1,1]             => 12
[4,2,2,2]               => 12
[4,2,2,1,1]             => 13
[4,2,1,1,1,1]           => 16
[4,1,1,1,1,1,1]         => 21
[3,3,3,1]               => 12
[3,3,2,2]               => 13
[3,3,2,1,1]             => 14
[3,3,1,1,1,1]           => 17
[3,2,2,2,1]             => 16
[3,2,2,1,1,1]           => 18
[3,2,1,1,1,1,1]         => 22
[3,1,1,1,1,1,1,1]       => 28
[2,2,2,2,2]             => 20
[2,2,2,2,1,1]           => 21
[2,2,2,1,1,1,1]         => 24
[2,2,1,1,1,1,1,1]       => 29
[2,1,1,1,1,1,1,1,1]     => 36
[1,1,1,1,1,1,1,1,1,1]   => 45
[8,3]                   => 3
[7,4]                   => 4
[6,5]                   => 5
[6,4,1]                 => 6
[5,5,1]                 => 7
[5,4,2]                 => 8
[5,4,1,1]               => 9
[5,3,3]                 => 9
[5,3,2,1]               => 10
[5,3,1,1,1]             => 12
[5,2,2,2]               => 12
[5,2,2,1,1]             => 13
[4,4,3]                 => 10
[4,4,2,1]               => 11
[4,4,1,1,1]             => 13
[4,3,3,1]               => 12
[4,3,2,2]               => 13
[4,3,2,1,1]             => 14
[4,2,2,2,1]             => 16
[3,3,3,2]               => 15
[3,3,3,1,1]             => 16
[3,3,2,2,1]             => 17
[3,2,2,2,2]             => 20
[2,2,2,2,2,1]           => 25
[7,5]                   => 5
[7,4,1]                 => 6
[6,6]                   => 6
[6,4,2]                 => 8
[5,5,2]                 => 9
[5,4,3]                 => 10
[5,4,2,1]               => 11
[5,4,1,1,1]             => 13
[5,3,3,1]               => 12
[5,3,2,2]               => 13
[5,3,2,1,1]             => 14
[5,2,2,2,1]             => 16
[4,4,4]                 => 12
[4,4,3,1]               => 13
[4,4,2,2]               => 14
[4,4,2,1,1]             => 15
[4,3,3,2]               => 15
[4,3,3,1,1]             => 16
[4,3,2,2,1]             => 17
[3,3,3,3]               => 18
[3,3,3,2,1]             => 19
[3,3,2,2,2]             => 21
[3,3,2,2,1,1]           => 22
[2,2,2,2,2,2]           => 30
[8,5]                   => 5
[7,5,1]                 => 7
[7,4,2]                 => 8
[5,5,3]                 => 11
[5,4,4]                 => 12
[5,4,3,1]               => 13
[5,4,2,2]               => 14
[5,4,2,1,1]             => 15
[5,3,3,2]               => 15
[5,3,3,1,1]             => 16
[5,3,2,2,1]             => 17
[4,4,4,1]               => 15
[4,4,3,2]               => 16
[4,4,3,1,1]             => 17
[4,4,2,2,1]             => 18
[4,3,3,3]               => 18
[4,3,3,2,1]             => 19
[3,3,3,3,1]             => 22
[3,3,3,2,2]             => 23
[9,5]                   => 5
[8,5,1]                 => 7
[7,5,2]                 => 9
[7,4,3]                 => 10
[5,5,4]                 => 13
[5,4,3,2]               => 16
[5,4,3,1,1]             => 17
[5,4,2,2,1]             => 18
[5,3,3,2,1]             => 19
[5,3,2,2,2]             => 21
[4,4,4,2]               => 18
[4,4,3,3]               => 19
[4,4,3,2,1]             => 20
[3,3,3,3,2]             => 26
[9,5,1]                 => 7
[8,5,2]                 => 9
[7,5,3]                 => 11
[5,5,5]                 => 15
[5,4,3,2,1]             => 20
[5,3,2,2,2,1]           => 26
[4,4,4,3]               => 21
[3,3,3,3,3]             => 30
[8,5,3]                 => 11
[7,5,3,1]               => 14
[4,4,4,4]               => 24
[8,6,3]                 => 12
[9,6,3]                 => 12
[8,6,4]                 => 14
[9,6,4]                 => 14
[8,5,4,2]               => 19
[8,5,5,1]               => 18
[7,5,4,3,1]             => 26
[8,6,4,2]               => 20
[10,6,4]                => 14
[10,7,3]                => 13
[9,7,4]                 => 15
[9,5,5,1]               => 18
[6,5,4,3,2,1]           => 35
[11,7,3]                => 13
[9,6,4,3]               => 23
[9,6,5,3]               => 25
[8,6,5,3,1]             => 29
[11,7,5,1]              => 20
[9,7,5,3]               => 26
[9,7,5,3,1]             => 30
[10,7,5,3]              => 26
[9,7,5,4,1]             => 33
[7,6,5,4,3,2,1]         => 56
[10,7,6,4,1]            => 35
[9,7,6,4,2]             => 39
[10,8,5,4,1]            => 34
[10,8,6,4,1]            => 36
[9,7,5,5,3,1]           => 49
[11,8,6,4,1]            => 36
[10,8,6,4,2]            => 40
[11,8,6,5,1]            => 39
[12,9,7,5,1]            => 42
[13,9,7,5,1]            => 42
[11,9,7,5,3,1]          => 55
[11,8,7,5,4,1]          => 58
[8,7,6,5,4,3,2,1]       => 84
[11,9,7,5,5,3]          => 73
[11,9,7,7,5,3,3]        => 97
[11,9,7,6,5,3,1]        => 82
[13,11,9,7,5,3,1]       => 91
[13,11,9,7,7,5,3,1]     => 128
[17,13,11,9,7,5,1]      => 121
[15,13,11,9,7,5,3,1]    => 140
[29,23,19,17,13,11,7,1] => 268

-----------------------------------------------------------------------------
Created: May 07, 2014 at 03:07 by Lahiru Kariyawasam

-----------------------------------------------------------------------------
Last Updated: Oct 11, 2023 at 15:39 by Martin Rubey