*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000184

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The size of the centralizer of any permutation of given cycle type.

The centralizer (or commutant, equivalently normalizer) of an element $g$ of a group $G$ is the set of elements of $G$ that commute with $g$:
$$C_g = \{h \in G : hgh^{-1} = g\}.$$
Its size thus depends only on the conjugacy class of $g$.

The conjugacy classes of a permutation is determined by its cycle type, and the size of the centralizer of a permutation with cycle type $\lambda = (1^{a_1},2^{a_2},\dots)$ is
$$|C| = \Pi j^{a_j} a_j!$$

For example, for any permutation with cycle type $\lambda = (3,2,2,1)$,
$$|C| = (3^1 \cdot 1!)(2^2 \cdot 2!)(1^1 \cdot 1!) = 24.$$

There is exactly one permutation of the empty set, the identity, so the statistic on the empty partition is $1$.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(p):
    return p.centralizer_size()


-----------------------------------------------------------------------------
Statistic values:

[]                    => 1
[1]                   => 1
[2]                   => 2
[1,1]                 => 2
[3]                   => 3
[2,1]                 => 2
[1,1,1]               => 6
[4]                   => 4
[3,1]                 => 3
[2,2]                 => 8
[2,1,1]               => 4
[1,1,1,1]             => 24
[5]                   => 5
[4,1]                 => 4
[3,2]                 => 6
[3,1,1]               => 6
[2,2,1]               => 8
[2,1,1,1]             => 12
[1,1,1,1,1]           => 120
[6]                   => 6
[5,1]                 => 5
[4,2]                 => 8
[4,1,1]               => 8
[3,3]                 => 18
[3,2,1]               => 6
[3,1,1,1]             => 18
[2,2,2]               => 48
[2,2,1,1]             => 16
[2,1,1,1,1]           => 48
[1,1,1,1,1,1]         => 720
[7]                   => 7
[6,1]                 => 6
[5,2]                 => 10
[5,1,1]               => 10
[4,3]                 => 12
[4,2,1]               => 8
[4,1,1,1]             => 24
[3,3,1]               => 18
[3,2,2]               => 24
[3,2,1,1]             => 12
[3,1,1,1,1]           => 72
[2,2,2,1]             => 48
[2,2,1,1,1]           => 48
[2,1,1,1,1,1]         => 240
[1,1,1,1,1,1,1]       => 5040
[8]                   => 8
[7,1]                 => 7
[6,2]                 => 12
[6,1,1]               => 12
[5,3]                 => 15
[5,2,1]               => 10
[5,1,1,1]             => 30
[4,4]                 => 32
[4,3,1]               => 12
[4,2,2]               => 32
[4,2,1,1]             => 16
[4,1,1,1,1]           => 96
[3,3,2]               => 36
[3,3,1,1]             => 36
[3,2,2,1]             => 24
[3,2,1,1,1]           => 36
[3,1,1,1,1,1]         => 360
[2,2,2,2]             => 384
[2,2,2,1,1]           => 96
[2,2,1,1,1,1]         => 192
[2,1,1,1,1,1,1]       => 1440
[1,1,1,1,1,1,1,1]     => 40320
[9]                   => 9
[8,1]                 => 8
[7,2]                 => 14
[7,1,1]               => 14
[6,3]                 => 18
[6,2,1]               => 12
[6,1,1,1]             => 36
[5,4]                 => 20
[5,3,1]               => 15
[5,2,2]               => 40
[5,2,1,1]             => 20
[5,1,1,1,1]           => 120
[4,4,1]               => 32
[4,3,2]               => 24
[4,3,1,1]             => 24
[4,2,2,1]             => 32
[4,2,1,1,1]           => 48
[4,1,1,1,1,1]         => 480
[3,3,3]               => 162
[3,3,2,1]             => 36
[3,3,1,1,1]           => 108
[3,2,2,2]             => 144
[3,2,2,1,1]           => 48
[3,2,1,1,1,1]         => 144
[3,1,1,1,1,1,1]       => 2160
[2,2,2,2,1]           => 384
[2,2,2,1,1,1]         => 288
[2,2,1,1,1,1,1]       => 960
[2,1,1,1,1,1,1,1]     => 10080
[1,1,1,1,1,1,1,1,1]   => 362880
[10]                  => 10
[9,1]                 => 9
[8,2]                 => 16
[8,1,1]               => 16
[7,3]                 => 21
[7,2,1]               => 14
[7,1,1,1]             => 42
[6,4]                 => 24
[6,3,1]               => 18
[6,2,2]               => 48
[6,2,1,1]             => 24
[6,1,1,1,1]           => 144
[5,5]                 => 50
[5,4,1]               => 20
[5,3,2]               => 30
[5,3,1,1]             => 30
[5,2,2,1]             => 40
[5,2,1,1,1]           => 60
[5,1,1,1,1,1]         => 600
[4,4,2]               => 64
[4,4,1,1]             => 64
[4,3,3]               => 72
[4,3,2,1]             => 24
[4,3,1,1,1]           => 72
[4,2,2,2]             => 192
[4,2,2,1,1]           => 64
[4,2,1,1,1,1]         => 192
[4,1,1,1,1,1,1]       => 2880
[3,3,3,1]             => 162
[3,3,2,2]             => 144
[3,3,2,1,1]           => 72
[3,3,1,1,1,1]         => 432
[3,2,2,2,1]           => 144
[3,2,2,1,1,1]         => 144
[3,2,1,1,1,1,1]       => 720
[3,1,1,1,1,1,1,1]     => 15120
[2,2,2,2,2]           => 3840
[2,2,2,2,1,1]         => 768
[2,2,2,1,1,1,1]       => 1152
[2,2,1,1,1,1,1,1]     => 5760
[2,1,1,1,1,1,1,1,1]   => 80640
[1,1,1,1,1,1,1,1,1,1] => 3628800

-----------------------------------------------------------------------------
Created: May 04, 2014 at 23:41 by Lahiru Kariyawasam

-----------------------------------------------------------------------------
Last Updated: Oct 29, 2017 at 16:33 by Martin Rubey