*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000182

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of permutations whose cycle type is the given integer partition.

This number is given by
$$\{ \pi \in \mathfrak{S}_n : \text{type}(\pi) = \lambda\} = \frac{n!}{\lambda_1 \cdots \lambda_k \mu_1(\lambda)! \cdots \mu_n(\lambda)!}$$
where $\mu_j(\lambda)$ denotes the number of parts of $\lambda$ equal to $j$.

All permutations with the same cycle type form a [[wikipedia:Conjugacy class]].

-----------------------------------------------------------------------------
References: [1] Section 1.3 p24  Kerber, A. Algebraic combinatorics via finite group actions [[MathSciNet:1115208]]

-----------------------------------------------------------------------------
Code:
def statistic(p):
    return p.conjugacy_class_size()

-----------------------------------------------------------------------------
Statistic values:

[]                              => 1
[1]                             => 1
[2]                             => 1
[1,1]                           => 1
[3]                             => 2
[2,1]                           => 3
[1,1,1]                         => 1
[4]                             => 6
[3,1]                           => 8
[2,2]                           => 3
[2,1,1]                         => 6
[1,1,1,1]                       => 1
[5]                             => 24
[4,1]                           => 30
[3,2]                           => 20
[3,1,1]                         => 20
[2,2,1]                         => 15
[2,1,1,1]                       => 10
[1,1,1,1,1]                     => 1
[6]                             => 120
[5,1]                           => 144
[4,2]                           => 90
[4,1,1]                         => 90
[3,3]                           => 40
[3,2,1]                         => 120
[3,1,1,1]                       => 40
[2,2,2]                         => 15
[2,2,1,1]                       => 45
[2,1,1,1,1]                     => 15
[1,1,1,1,1,1]                   => 1
[7]                             => 720
[6,1]                           => 840
[5,2]                           => 504
[5,1,1]                         => 504
[4,3]                           => 420
[4,2,1]                         => 630
[4,1,1,1]                       => 210
[3,3,1]                         => 280
[3,2,2]                         => 210
[3,2,1,1]                       => 420
[3,1,1,1,1]                     => 70
[2,2,2,1]                       => 105
[2,2,1,1,1]                     => 105
[2,1,1,1,1,1]                   => 21
[1,1,1,1,1,1,1]                 => 1
[8]                             => 5040
[7,1]                           => 5760
[6,2]                           => 3360
[6,1,1]                         => 3360
[5,3]                           => 2688
[5,2,1]                         => 4032
[5,1,1,1]                       => 1344
[4,4]                           => 1260
[4,3,1]                         => 3360
[4,2,2]                         => 1260
[4,2,1,1]                       => 2520
[4,1,1,1,1]                     => 420
[3,3,2]                         => 1120
[3,3,1,1]                       => 1120
[3,2,2,1]                       => 1680
[3,2,1,1,1]                     => 1120
[3,1,1,1,1,1]                   => 112
[2,2,2,2]                       => 105
[2,2,2,1,1]                     => 420
[2,2,1,1,1,1]                   => 210
[2,1,1,1,1,1,1]                 => 28
[1,1,1,1,1,1,1,1]               => 1
[9]                             => 40320
[8,1]                           => 45360
[7,2]                           => 25920
[7,1,1]                         => 25920
[6,3]                           => 20160
[6,2,1]                         => 30240
[6,1,1,1]                       => 10080
[5,4]                           => 18144
[5,3,1]                         => 24192
[5,2,2]                         => 9072
[5,2,1,1]                       => 18144
[5,1,1,1,1]                     => 3024
[4,4,1]                         => 11340
[4,3,2]                         => 15120
[4,3,1,1]                       => 15120
[4,2,2,1]                       => 11340
[4,2,1,1,1]                     => 7560
[4,1,1,1,1,1]                   => 756
[3,3,3]                         => 2240
[3,3,2,1]                       => 10080
[3,3,1,1,1]                     => 3360
[3,2,2,2]                       => 2520
[3,2,2,1,1]                     => 7560
[3,2,1,1,1,1]                   => 2520
[3,1,1,1,1,1,1]                 => 168
[2,2,2,2,1]                     => 945
[2,2,2,1,1,1]                   => 1260
[2,2,1,1,1,1,1]                 => 378
[2,1,1,1,1,1,1,1]               => 36
[1,1,1,1,1,1,1,1,1]             => 1
[10]                            => 362880
[9,1]                           => 403200
[8,2]                           => 226800
[8,1,1]                         => 226800
[7,3]                           => 172800
[7,2,1]                         => 259200
[7,1,1,1]                       => 86400
[6,4]                           => 151200
[6,3,1]                         => 201600
[6,2,2]                         => 75600
[6,2,1,1]                       => 151200
[6,1,1,1,1]                     => 25200
[5,5]                           => 72576
[5,4,1]                         => 181440
[5,3,2]                         => 120960
[5,3,1,1]                       => 120960
[5,2,2,1]                       => 90720
[5,2,1,1,1]                     => 60480
[5,1,1,1,1,1]                   => 6048
[4,4,2]                         => 56700
[4,4,1,1]                       => 56700
[4,3,3]                         => 50400
[4,3,2,1]                       => 151200
[4,3,1,1,1]                     => 50400
[4,2,2,2]                       => 18900
[4,2,2,1,1]                     => 56700
[4,2,1,1,1,1]                   => 18900
[4,1,1,1,1,1,1]                 => 1260
[3,3,3,1]                       => 22400
[3,3,2,2]                       => 25200
[3,3,2,1,1]                     => 50400
[3,3,1,1,1,1]                   => 8400
[3,2,2,2,1]                     => 25200
[3,2,2,1,1,1]                   => 25200
[3,2,1,1,1,1,1]                 => 5040
[3,1,1,1,1,1,1,1]               => 240
[2,2,2,2,2]                     => 945
[2,2,2,2,1,1]                   => 4725
[2,2,2,1,1,1,1]                 => 3150
[2,2,1,1,1,1,1,1]               => 630
[2,1,1,1,1,1,1,1,1]             => 45
[1,1,1,1,1,1,1,1,1,1]           => 1
[11]                            => 3628800
[10,1]                          => 3991680
[9,1,1]                         => 2217600
[8,3]                           => 1663200
[7,4]                           => 1425600
[6,5]                           => 1330560
[6,4,1]                         => 1663200
[6,1,1,1,1,1]                   => 55440
[5,5,1]                         => 798336
[5,4,2]                         => 997920
[5,4,1,1]                       => 997920
[5,3,3]                         => 443520
[5,3,2,1]                       => 1330560
[5,3,1,1,1]                     => 443520
[5,2,2,2]                       => 166320
[5,2,2,1,1]                     => 498960
[5,2,1,1,1,1]                   => 166320
[4,4,3]                         => 415800
[4,4,2,1]                       => 623700
[4,4,1,1,1]                     => 207900
[4,3,3,1]                       => 554400
[4,3,2,2]                       => 415800
[4,3,2,1,1]                     => 831600
[4,2,2,2,1]                     => 207900
[3,3,3,2]                       => 123200
[3,3,3,1,1]                     => 123200
[3,3,2,2,1]                     => 277200
[3,2,2,2,2]                     => 34650
[2,2,2,2,2,1]                   => 10395
[2,1,1,1,1,1,1,1,1,1]           => 55
[1,1,1,1,1,1,1,1,1,1,1]         => 1
[12]                            => 39916800
[11,1]                          => 43545600
[10,1,1]                        => 23950080
[9,3]                           => 17740800
[7,5]                           => 13685760
[7,4,1]                         => 17107200
[6,6]                           => 6652800
[6,4,2]                         => 9979200
[5,5,2]                         => 4790016
[5,4,3]                         => 7983360
[5,4,2,1]                       => 11975040
[5,4,1,1,1]                     => 3991680
[5,3,3,1]                       => 5322240
[5,3,2,2]                       => 3991680
[5,3,2,1,1]                     => 7983360
[5,2,2,2,1]                     => 1995840
[5,2,2,1,1,1]                   => 1995840
[4,4,4]                         => 1247400
[4,4,3,1]                       => 4989600
[4,4,2,2]                       => 1871100
[4,4,2,1,1]                     => 3742200
[4,3,3,2]                       => 3326400
[4,3,3,1,1]                     => 3326400
[4,3,2,2,1]                     => 4989600
[3,3,3,3]                       => 246400
[3,3,3,2,1]                     => 1478400
[3,3,2,2,2]                     => 554400
[3,3,2,2,1,1]                   => 1663200
[3,2,2,2,2,1]                   => 415800
[2,2,2,2,2,2]                   => 10395
[1,1,1,1,1,1,1,1,1,1,1,1]       => 1
[13]                            => 479001600
[12,1]                          => 518918400
[10,3]                          => 207567360
[8,5]                           => 155675520
[7,6]                           => 148262400
[7,5,1]                         => 177914880
[7,4,2]                         => 111196800
[6,6,1]                         => 86486400
[6,4,2,1]                       => 129729600
[5,5,3]                         => 41513472
[5,4,4]                         => 38918880
[5,4,3,1]                       => 103783680
[5,4,2,2]                       => 38918880
[5,4,2,1,1]                     => 77837760
[5,4,1,1,1,1]                   => 12972960
[5,3,3,2]                       => 34594560
[5,3,3,1,1]                     => 34594560
[5,3,2,2,1]                     => 51891840
[5,3,2,1,1,1]                   => 34594560
[4,4,4,1]                       => 16216200
[4,4,3,2]                       => 32432400
[4,4,3,1,1]                     => 32432400
[4,4,2,2,1]                     => 24324300
[4,3,3,3]                       => 9609600
[4,3,3,2,1]                     => 43243200
[3,3,3,3,1]                     => 3203200
[3,3,3,2,2]                     => 4804800
[3,3,2,2,2,1]                   => 7207200
[3,2,2,2,2,2]                   => 540540
[2,2,2,2,2,2,1]                 => 135135
[1,1,1,1,1,1,1,1,1,1,1,1,1]     => 1
[9,5]                           => 1937295360
[7,7]                           => 889574400
[7,5,2]                         => 1245404160
[7,4,3]                         => 1037836800
[6,6,2]                         => 605404800
[6,4,4]                         => 454053600
[6,2,2,2,2]                     => 37837800
[5,5,4]                         => 435891456
[5,5,1,1,1,1]                   => 72648576
[5,4,3,2]                       => 726485760
[5,4,3,1,1]                     => 726485760
[5,4,2,2,1]                     => 544864320
[5,4,2,1,1,1]                   => 363242880
[5,3,3,3]                       => 107627520
[5,3,3,2,1]                     => 484323840
[5,2,2,2,2,1]                   => 45405360
[4,4,4,2]                       => 113513400
[4,4,3,3]                       => 151351200
[4,4,3,2,1]                     => 454053600
[4,3,2,2,2,1]                   => 151351200
[3,3,3,3,2]                     => 22422400
[3,3,3,3,1,1]                   => 22422400
[3,3,2,2,2,2]                   => 12612600
[2,2,2,2,2,2,2]                 => 135135
[1,1,1,1,1,1,1,1,1,1,1,1,1,1]   => 1
[6,5,1,1,1,1]                   => 1816214400
[6,3,3,3]                       => 1345344000
[6,2,2,2,2,1]                   => 567567000
[5,5,5]                         => 1743565824
[5,3,2,2,2,1]                   => 1816214400
[4,4,4,3]                       => 1135134000
[4,4,4,1,1,1]                   => 567567000
[4,3,3,3,2]                     => 1009008000
[3,3,3,3,3]                     => 44844800
[3,3,3,3,2,1]                   => 336336000
[3,3,3,2,2,2]                   => 168168000
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[3,3,3,3,2,2]                   => 1345344000
[2,2,2,2,2,2,2,2]               => 2027025
[2,2,2,2,2,2,2,2,2]             => 34459425

-----------------------------------------------------------------------------
Created: May 03, 2014 at 21:11 by Lahiru Kariyawasam

-----------------------------------------------------------------------------
Last Updated: May 25, 2023 at 14:21 by Martin Rubey