Identifier
-
Mp00152:
Graphs
—Laplacian multiplicities⟶
Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
St000166: Ordered trees ⟶ ℤ (values match St000094The depth of an ordered tree.)
Values
([],1) => [1] => [1,0] => [[]] => 1
([],2) => [2] => [1,1,0,0] => [[[]]] => 2
([(0,1)],2) => [1,1] => [1,0,1,0] => [[],[]] => 1
([],3) => [3] => [1,1,1,0,0,0] => [[[[]]]] => 3
([(1,2)],3) => [1,2] => [1,0,1,1,0,0] => [[],[[]]] => 2
([(0,2),(1,2)],3) => [1,1,1] => [1,0,1,0,1,0] => [[],[],[]] => 1
([(0,1),(0,2),(1,2)],3) => [2,1] => [1,1,0,0,1,0] => [[[]],[]] => 2
([],4) => [4] => [1,1,1,1,0,0,0,0] => [[[[[]]]]] => 4
([(2,3)],4) => [1,3] => [1,0,1,1,1,0,0,0] => [[],[[[]]]] => 3
([(1,3),(2,3)],4) => [1,1,2] => [1,0,1,0,1,1,0,0] => [[],[],[[]]] => 2
([(0,3),(1,3),(2,3)],4) => [1,2,1] => [1,0,1,1,0,0,1,0] => [[],[[]],[]] => 2
([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => [[[]],[[]]] => 2
([(0,3),(1,2),(2,3)],4) => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [[],[],[],[]] => 1
([(1,2),(1,3),(2,3)],4) => [2,2] => [1,1,0,0,1,1,0,0] => [[[]],[[]]] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [[],[],[],[]] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => [1,2,1] => [1,0,1,1,0,0,1,0] => [[],[[]],[]] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,1,0,0,1,0,1,0] => [[[]],[],[]] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,1,0,0,0,1,0] => [[[[]]],[]] => 3
([],5) => [5] => [1,1,1,1,1,0,0,0,0,0] => [[[[[[]]]]]] => 5
([(3,4)],5) => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [[],[[[[]]]]] => 4
([(2,4),(3,4)],5) => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [[],[],[[[]]]] => 3
([(1,4),(2,4),(3,4)],5) => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [[],[[]],[[]]] => 2
([(0,4),(1,4),(2,4),(3,4)],5) => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [[],[[[]]],[]] => 3
([(1,4),(2,3)],5) => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [[[]],[[[]]]] => 3
([(1,4),(2,3),(3,4)],5) => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [[],[],[],[[]]] => 2
([(0,1),(2,4),(3,4)],5) => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [[],[],[],[[]]] => 2
([(2,3),(2,4),(3,4)],5) => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [[[]],[[[]]]] => 3
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 1
([(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [[],[],[],[[]]] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [[],[],[[]],[]] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [[],[[]],[[]]] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [[[]],[],[[]]] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [[],[],[[]],[]] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [[[]],[[]],[]] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [[[]],[],[[]]] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [[],[[]],[],[]] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [[[]],[[]],[]] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [[[[]]],[[]]] => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [[],[[]],[],[]] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [[[]],[],[],[]] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [[[]],[[]],[]] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [[[[]]],[],[]] => 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [[[[[]]]],[]] => 4
([],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [[[[[[[]]]]]]] => 6
([(4,5)],6) => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [[],[[[[[]]]]]] => 5
([(3,5),(4,5)],6) => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [[],[],[[[[]]]]] => 4
([(2,5),(3,5),(4,5)],6) => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[],[[]],[[[]]]] => 3
([(1,5),(2,5),(3,5),(4,5)],6) => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[],[[[]]],[[]]] => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [[],[[[[]]]],[]] => 4
([(2,5),(3,4)],6) => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [[[]],[[[[]]]]] => 4
([(2,5),(3,4),(4,5)],6) => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [[],[],[],[[[]]]] => 3
([(1,2),(3,5),(4,5)],6) => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [[],[],[],[[[]]]] => 3
([(3,4),(3,5),(4,5)],6) => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [[[]],[[[[]]]]] => 4
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[],[],[],[],[[]]] => 2
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[],[],[[]],[[]]] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [[],[],[],[[[]]]] => 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [[],[],[[]],[],[]] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[],[],[[]],[[]]] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [[],[],[[[]]],[]] => 3
([(2,4),(2,5),(3,4),(3,5)],6) => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[],[[]],[[[]]]] => 3
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[[]],[[]],[[]]] => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[],[],[],[],[[]]] => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[]] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [[[]],[],[[[]]]] => 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[],[],[],[],[[]]] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [[],[],[[]],[],[]] => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[]] => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[],[],[],[],[[]]] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[]] => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [[],[],[],[[]],[]] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[],[],[[]],[[]]] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[]] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [[],[],[[]],[],[]] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[[]],[[]],[[]]] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[]] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [[],[],[[]],[],[]] => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [[],[],[[[]]],[]] => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [[[]],[[[]]],[]] => 3
([(0,5),(1,4),(2,3)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[[[]]],[[[]]]] => 3
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[],[],[],[],[[]]] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [[],[[]],[],[[]]] => 2
([(1,2),(3,4),(3,5),(4,5)],6) => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [[[]],[],[[[]]]] => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[]] => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[],[],[],[],[[]]] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[],[],[],[],[[]]] => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[]] => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [[],[[]],[],[[]]] => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[],[[]],[[]],[]] => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[[]],[[]],[[]]] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[]] => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[],[],[],[],[[]]] => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[]] => 1
>>> Load all 208 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The depth minus 1 of an ordered tree.
The ordered trees of size $n$ are bijection with the Dyck paths of size $n-1$, and this statistic then corresponds to St000013The height of a Dyck path..
The ordered trees of size $n$ are bijection with the Dyck paths of size $n-1$, and this statistic then corresponds to St000013The height of a Dyck path..
Map
Laplacian multiplicities
Description
The composition of multiplicities of the Laplacian eigenvalues.
Let $\lambda_1 > \lambda_2 > \dots$ be the eigenvalues of the Laplacian matrix of a graph on $n$ vertices. Then this map returns the composition $a_1,\dots,a_k$ of $n$ where $a_i$ is the multiplicity of $\lambda_i$.
Let $\lambda_1 > \lambda_2 > \dots$ be the eigenvalues of the Laplacian matrix of a graph on $n$ vertices. Then this map returns the composition $a_1,\dots,a_k$ of $n$ where $a_i$ is the multiplicity of $\lambda_i$.
Map
to ordered tree
Description
Sends a Dyck path to the ordered tree encoding the heights of the path.
This map is recursively defined as follows: A Dyck path $D$ of semilength $n$ may be decomposed, according to its returns (St000011The number of touch points (or returns) of a Dyck path.), into smaller paths $D_1,\dots,D_k$ of respective semilengths $n_1,\dots,n_k$ (so one has $n = n_1 + \dots n_k$) each of which has no returns.
Denote by $\tilde D_i$ the path of semilength $n_i-1$ obtained from $D_i$ by removing the initial up- and the final down-step.
This map then sends $D$ to the tree $T$ having a root note with ordered children $T_1,\dots,T_k$ which are again ordered trees computed from $D_1,\dots,D_k$ respectively.
The unique path of semilength $1$ is sent to the tree consisting of a single node.
This map is recursively defined as follows: A Dyck path $D$ of semilength $n$ may be decomposed, according to its returns (St000011The number of touch points (or returns) of a Dyck path.), into smaller paths $D_1,\dots,D_k$ of respective semilengths $n_1,\dots,n_k$ (so one has $n = n_1 + \dots n_k$) each of which has no returns.
Denote by $\tilde D_i$ the path of semilength $n_i-1$ obtained from $D_i$ by removing the initial up- and the final down-step.
This map then sends $D$ to the tree $T$ having a root note with ordered children $T_1,\dots,T_k$ which are again ordered trees computed from $D_1,\dots,D_k$ respectively.
The unique path of semilength $1$ is sent to the tree consisting of a single node.
Map
bounce path
Description
The bounce path determined by an integer composition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!