Identifier
Values
=>
[1]=>[1]=>1 [1,2]=>[1,2]=>3 [2,1]=>[2,1]=>3 [1,2,3]=>[1,2,3]=>6 [1,3,2]=>[1,3,2]=>6 [2,1,3]=>[2,1,3]=>6 [2,3,1]=>[2,3,1]=>6 [3,1,2]=>[3,1,2]=>6 [3,2,1]=>[3,2,1]=>6 [1,2,3,4]=>[1,2,3,4]=>10 [1,2,4,3]=>[1,2,4,3]=>10 [1,3,2,4]=>[1,3,2,4]=>10 [1,3,4,2]=>[1,3,4,2]=>10 [1,4,2,3]=>[1,4,2,3]=>10 [1,4,3,2]=>[1,4,3,2]=>10 [2,1,3,4]=>[2,1,3,4]=>10 [2,1,4,3]=>[2,1,4,3]=>10 [2,3,1,4]=>[2,3,1,4]=>10 [2,3,4,1]=>[2,3,4,1]=>10 [2,4,1,3]=>[2,4,1,3]=>10 [2,4,3,1]=>[2,4,3,1]=>10 [3,1,2,4]=>[3,1,2,4]=>10 [3,1,4,2]=>[3,1,4,2]=>10 [3,2,1,4]=>[3,2,1,4]=>10 [3,2,4,1]=>[3,2,4,1]=>10 [3,4,1,2]=>[3,4,1,2]=>10 [3,4,2,1]=>[3,4,2,1]=>10 [4,1,2,3]=>[4,1,2,3]=>10 [4,1,3,2]=>[4,1,3,2]=>10 [4,2,1,3]=>[4,2,1,3]=>10 [4,2,3,1]=>[4,2,3,1]=>10 [4,3,1,2]=>[4,3,1,2]=>10 [4,3,2,1]=>[4,3,2,1]=>10
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The sum of the entries of a parking function.
The generating function for parking functions by sum is the evaluation at $x=1$ and $y=1/q$ of the Tutte polynomial of the complete graph, multiplied by $q^\binom{n}{2}$.
Map
parking function
Description
Interpret the permutation as a parking function.