Identifier
-
Mp00308:
Integer partitions
—Bulgarian solitaire⟶
Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000157: Standard tableaux ⟶ ℤ
Values
[1] => [1] => [[1]] => 0
[2] => [1,1] => [[1],[2]] => 1
[1,1] => [2] => [[1,2]] => 0
[3] => [2,1] => [[1,3],[2]] => 1
[2,1] => [2,1] => [[1,3],[2]] => 1
[1,1,1] => [3] => [[1,2,3]] => 0
[4] => [3,1] => [[1,3,4],[2]] => 1
[3,1] => [2,2] => [[1,2],[3,4]] => 1
[2,2] => [2,1,1] => [[1,4],[2],[3]] => 2
[2,1,1] => [3,1] => [[1,3,4],[2]] => 1
[1,1,1,1] => [4] => [[1,2,3,4]] => 0
[5] => [4,1] => [[1,3,4,5],[2]] => 1
[4,1] => [3,2] => [[1,2,5],[3,4]] => 1
[3,2] => [2,2,1] => [[1,3],[2,5],[4]] => 2
[3,1,1] => [3,2] => [[1,2,5],[3,4]] => 1
[2,2,1] => [3,1,1] => [[1,4,5],[2],[3]] => 2
[2,1,1,1] => [4,1] => [[1,3,4,5],[2]] => 1
[1,1,1,1,1] => [5] => [[1,2,3,4,5]] => 0
[6] => [5,1] => [[1,3,4,5,6],[2]] => 1
[5,1] => [4,2] => [[1,2,5,6],[3,4]] => 1
[4,2] => [3,2,1] => [[1,3,6],[2,5],[4]] => 2
[4,1,1] => [3,3] => [[1,2,3],[4,5,6]] => 1
[3,3] => [2,2,2] => [[1,2],[3,4],[5,6]] => 2
[3,2,1] => [3,2,1] => [[1,3,6],[2,5],[4]] => 2
[3,1,1,1] => [4,2] => [[1,2,5,6],[3,4]] => 1
[2,2,2] => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 3
[2,2,1,1] => [4,1,1] => [[1,4,5,6],[2],[3]] => 2
[2,1,1,1,1] => [5,1] => [[1,3,4,5,6],[2]] => 1
[1,1,1,1,1,1] => [6] => [[1,2,3,4,5,6]] => 0
[7] => [6,1] => [[1,3,4,5,6,7],[2]] => 1
[6,1] => [5,2] => [[1,2,5,6,7],[3,4]] => 1
[5,2] => [4,2,1] => [[1,3,6,7],[2,5],[4]] => 2
[5,1,1] => [4,3] => [[1,2,3,7],[4,5,6]] => 1
[4,3] => [3,2,2] => [[1,2,7],[3,4],[5,6]] => 2
[4,2,1] => [3,3,1] => [[1,3,4],[2,6,7],[5]] => 2
[4,1,1,1] => [4,3] => [[1,2,3,7],[4,5,6]] => 1
[3,3,1] => [3,2,2] => [[1,2,7],[3,4],[5,6]] => 2
[3,2,2] => [3,2,1,1] => [[1,4,7],[2,6],[3],[5]] => 3
[3,2,1,1] => [4,2,1] => [[1,3,6,7],[2,5],[4]] => 2
[3,1,1,1,1] => [5,2] => [[1,2,5,6,7],[3,4]] => 1
[2,2,2,1] => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 3
[2,2,1,1,1] => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 2
[2,1,1,1,1,1] => [6,1] => [[1,3,4,5,6,7],[2]] => 1
[1,1,1,1,1,1,1] => [7] => [[1,2,3,4,5,6,7]] => 0
[8] => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
[7,1] => [6,2] => [[1,2,5,6,7,8],[3,4]] => 1
[6,2] => [5,2,1] => [[1,3,6,7,8],[2,5],[4]] => 2
[6,1,1] => [5,3] => [[1,2,3,7,8],[4,5,6]] => 1
[5,3] => [4,2,2] => [[1,2,7,8],[3,4],[5,6]] => 2
[5,2,1] => [4,3,1] => [[1,3,4,8],[2,6,7],[5]] => 2
[5,1,1,1] => [4,4] => [[1,2,3,4],[5,6,7,8]] => 1
[4,4] => [3,3,2] => [[1,2,5],[3,4,8],[6,7]] => 2
[4,3,1] => [3,3,2] => [[1,2,5],[3,4,8],[6,7]] => 2
[4,2,2] => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 3
[4,2,1,1] => [4,3,1] => [[1,3,4,8],[2,6,7],[5]] => 2
[4,1,1,1,1] => [5,3] => [[1,2,3,7,8],[4,5,6]] => 1
[3,3,2] => [3,2,2,1] => [[1,3,8],[2,5],[4,7],[6]] => 3
[3,3,1,1] => [4,2,2] => [[1,2,7,8],[3,4],[5,6]] => 2
[3,2,2,1] => [4,2,1,1] => [[1,4,7,8],[2,6],[3],[5]] => 3
[3,2,1,1,1] => [5,2,1] => [[1,3,6,7,8],[2,5],[4]] => 2
[3,1,1,1,1,1] => [6,2] => [[1,2,5,6,7,8],[3,4]] => 1
[2,2,2,2] => [4,1,1,1,1] => [[1,6,7,8],[2],[3],[4],[5]] => 4
[2,2,2,1,1] => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 3
[2,2,1,1,1,1] => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 2
[2,1,1,1,1,1,1] => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
[1,1,1,1,1,1,1,1] => [8] => [[1,2,3,4,5,6,7,8]] => 0
[9] => [8,1] => [[1,3,4,5,6,7,8,9],[2]] => 1
[8,1] => [7,2] => [[1,2,5,6,7,8,9],[3,4]] => 1
[7,2] => [6,2,1] => [[1,3,6,7,8,9],[2,5],[4]] => 2
[7,1,1] => [6,3] => [[1,2,3,7,8,9],[4,5,6]] => 1
[6,3] => [5,2,2] => [[1,2,7,8,9],[3,4],[5,6]] => 2
[6,2,1] => [5,3,1] => [[1,3,4,8,9],[2,6,7],[5]] => 2
[6,1,1,1] => [5,4] => [[1,2,3,4,9],[5,6,7,8]] => 1
[5,4] => [4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => 2
[5,3,1] => [4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => 2
[5,2,2] => [4,3,1,1] => [[1,4,5,9],[2,7,8],[3],[6]] => 3
[5,2,1,1] => [4,4,1] => [[1,3,4,5],[2,7,8,9],[6]] => 2
[5,1,1,1,1] => [5,4] => [[1,2,3,4,9],[5,6,7,8]] => 1
[4,4,1] => [3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => 2
[4,3,2] => [3,3,2,1] => [[1,3,6],[2,5,9],[4,8],[7]] => 3
[4,3,1,1] => [4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => 2
[4,2,2,1] => [4,3,1,1] => [[1,4,5,9],[2,7,8],[3],[6]] => 3
[4,2,1,1,1] => [5,3,1] => [[1,3,4,8,9],[2,6,7],[5]] => 2
[4,1,1,1,1,1] => [6,3] => [[1,2,3,7,8,9],[4,5,6]] => 1
[3,3,3] => [3,2,2,2] => [[1,2,9],[3,4],[5,6],[7,8]] => 3
[3,3,2,1] => [4,2,2,1] => [[1,3,8,9],[2,5],[4,7],[6]] => 3
[3,3,1,1,1] => [5,2,2] => [[1,2,7,8,9],[3,4],[5,6]] => 2
[3,2,2,2] => [4,2,1,1,1] => [[1,5,8,9],[2,7],[3],[4],[6]] => 4
[3,2,2,1,1] => [5,2,1,1] => [[1,4,7,8,9],[2,6],[3],[5]] => 3
[3,2,1,1,1,1] => [6,2,1] => [[1,3,6,7,8,9],[2,5],[4]] => 2
[3,1,1,1,1,1,1] => [7,2] => [[1,2,5,6,7,8,9],[3,4]] => 1
[2,2,2,2,1] => [5,1,1,1,1] => [[1,6,7,8,9],[2],[3],[4],[5]] => 4
[2,2,2,1,1,1] => [6,1,1,1] => [[1,5,6,7,8,9],[2],[3],[4]] => 3
[2,2,1,1,1,1,1] => [7,1,1] => [[1,4,5,6,7,8,9],[2],[3]] => 2
[2,1,1,1,1,1,1,1] => [8,1] => [[1,3,4,5,6,7,8,9],[2]] => 1
[1,1,1,1,1,1,1,1,1] => [9] => [[1,2,3,4,5,6,7,8,9]] => 0
[10] => [9,1] => [[1,3,4,5,6,7,8,9,10],[2]] => 1
[9,1] => [8,2] => [[1,2,5,6,7,8,9,10],[3,4]] => 1
[8,2] => [7,2,1] => [[1,3,6,7,8,9,10],[2,5],[4]] => 2
[8,1,1] => [7,3] => [[1,2,3,7,8,9,10],[4,5,6]] => 1
[7,3] => [6,2,2] => [[1,2,7,8,9,10],[3,4],[5,6]] => 2
>>> Load all 215 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of descents of a standard tableau.
Entry i of a standard Young tableau is a descent if i+1 appears in a row below the row of i.
Entry i of a standard Young tableau is a descent if i+1 appears in a row below the row of i.
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau T labeled down (in English convention) each column to the shape of a partition.
Map
Bulgarian solitaire
Description
A move in Bulgarian solitaire.
Remove the first column of the Ferrers diagram and insert it as a new row.
If the partition is empty, return the empty partition.
Remove the first column of the Ferrers diagram and insert it as a new row.
If the partition is empty, return the empty partition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!