*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000145

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The Dyson rank of a partition.

This rank is defined as the largest part minus the number of parts. It was introduced by Dyson [1] in connection to Ramanujan's partition congruences $$p(5n+4) \equiv 0 \pmod 5$$ and $$p(7n+6) \equiv 0 \pmod 7.$$

-----------------------------------------------------------------------------
References: [1]  Dyson, F. J. Some guesses in the theory of partitions [[MathSciNet:3077150]]

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return L[0] - len(L)

-----------------------------------------------------------------------------
Statistic values:

[1]                   => 0
[2]                   => 1
[1,1]                 => -1
[3]                   => 2
[2,1]                 => 0
[1,1,1]               => -2
[4]                   => 3
[3,1]                 => 1
[2,2]                 => 0
[2,1,1]               => -1
[1,1,1,1]             => -3
[5]                   => 4
[4,1]                 => 2
[3,2]                 => 1
[3,1,1]               => 0
[2,2,1]               => -1
[2,1,1,1]             => -2
[1,1,1,1,1]           => -4
[6]                   => 5
[5,1]                 => 3
[4,2]                 => 2
[4,1,1]               => 1
[3,3]                 => 1
[3,2,1]               => 0
[3,1,1,1]             => -1
[2,2,2]               => -1
[2,2,1,1]             => -2
[2,1,1,1,1]           => -3
[1,1,1,1,1,1]         => -5
[7]                   => 6
[6,1]                 => 4
[5,2]                 => 3
[5,1,1]               => 2
[4,3]                 => 2
[4,2,1]               => 1
[4,1,1,1]             => 0
[3,3,1]               => 0
[3,2,2]               => 0
[3,2,1,1]             => -1
[3,1,1,1,1]           => -2
[2,2,2,1]             => -2
[2,2,1,1,1]           => -3
[2,1,1,1,1,1]         => -4
[1,1,1,1,1,1,1]       => -6
[8]                   => 7
[7,1]                 => 5
[6,2]                 => 4
[6,1,1]               => 3
[5,3]                 => 3
[5,2,1]               => 2
[5,1,1,1]             => 1
[4,4]                 => 2
[4,3,1]               => 1
[4,2,2]               => 1
[4,2,1,1]             => 0
[4,1,1,1,1]           => -1
[3,3,2]               => 0
[3,3,1,1]             => -1
[3,2,2,1]             => -1
[3,2,1,1,1]           => -2
[3,1,1,1,1,1]         => -3
[2,2,2,2]             => -2
[2,2,2,1,1]           => -3
[2,2,1,1,1,1]         => -4
[2,1,1,1,1,1,1]       => -5
[1,1,1,1,1,1,1,1]     => -7
[9]                   => 8
[8,1]                 => 6
[7,2]                 => 5
[7,1,1]               => 4
[6,3]                 => 4
[6,2,1]               => 3
[6,1,1,1]             => 2
[5,4]                 => 3
[5,3,1]               => 2
[5,2,2]               => 2
[5,2,1,1]             => 1
[5,1,1,1,1]           => 0
[4,4,1]               => 1
[4,3,2]               => 1
[4,3,1,1]             => 0
[4,2,2,1]             => 0
[4,2,1,1,1]           => -1
[4,1,1,1,1,1]         => -2
[3,3,3]               => 0
[3,3,2,1]             => -1
[3,3,1,1,1]           => -2
[3,2,2,2]             => -1
[3,2,2,1,1]           => -2
[3,2,1,1,1,1]         => -3
[3,1,1,1,1,1,1]       => -4
[2,2,2,2,1]           => -3
[2,2,2,1,1,1]         => -4
[2,2,1,1,1,1,1]       => -5
[2,1,1,1,1,1,1,1]     => -6
[1,1,1,1,1,1,1,1,1]   => -8
[10]                  => 9
[9,1]                 => 7
[8,2]                 => 6
[8,1,1]               => 5
[7,3]                 => 5
[7,2,1]               => 4
[7,1,1,1]             => 3
[6,4]                 => 4
[6,3,1]               => 3
[6,2,2]               => 3
[6,2,1,1]             => 2
[6,1,1,1,1]           => 1
[5,5]                 => 3
[5,4,1]               => 2
[5,3,2]               => 2
[5,3,1,1]             => 1
[5,2,2,1]             => 1
[5,2,1,1,1]           => 0
[5,1,1,1,1,1]         => -1
[4,4,2]               => 1
[4,4,1,1]             => 0
[4,3,3]               => 1
[4,3,2,1]             => 0
[4,3,1,1,1]           => -1
[4,2,2,2]             => 0
[4,2,2,1,1]           => -1
[4,2,1,1,1,1]         => -2
[4,1,1,1,1,1,1]       => -3
[3,3,3,1]             => -1
[3,3,2,2]             => -1
[3,3,2,1,1]           => -2
[3,3,1,1,1,1]         => -3
[3,2,2,2,1]           => -2
[3,2,2,1,1,1]         => -3
[3,2,1,1,1,1,1]       => -4
[3,1,1,1,1,1,1,1]     => -5
[2,2,2,2,2]           => -3
[2,2,2,2,1,1]         => -4
[2,2,2,1,1,1,1]       => -5
[2,2,1,1,1,1,1,1]     => -6
[2,1,1,1,1,1,1,1,1]   => -7
[1,1,1,1,1,1,1,1,1,1] => -9

-----------------------------------------------------------------------------
Created: Jul 03, 2013 at 14:34 by Olivier Mallet

-----------------------------------------------------------------------------
Last Updated: May 29, 2015 at 16:57 by Martin Rubey