Identifier
-
Mp00312:
Integer partitions
—Glaisher-Franklin⟶
Integer partitions
St000143: Integer partitions ⟶ ℤ
Values
[1] => [1] => 0
[2] => [1,1] => 1
[1,1] => [2] => 0
[3] => [3] => 0
[2,1] => [1,1,1] => 1
[1,1,1] => [2,1] => 0
[4] => [2,2] => 2
[3,1] => [3,1] => 0
[2,2] => [1,1,1,1] => 1
[2,1,1] => [2,1,1] => 1
[1,1,1,1] => [4] => 0
[5] => [5] => 0
[4,1] => [2,2,1] => 2
[3,2] => [3,1,1] => 1
[3,1,1] => [3,2] => 0
[2,2,1] => [1,1,1,1,1] => 1
[2,1,1,1] => [2,1,1,1] => 1
[1,1,1,1,1] => [4,1] => 0
[6] => [3,3] => 3
[5,1] => [5,1] => 0
[4,2] => [2,2,1,1] => 2
[4,1,1] => [2,2,2] => 2
[3,3] => [6] => 0
[3,2,1] => [3,1,1,1] => 1
[3,1,1,1] => [3,2,1] => 0
[2,2,2] => [1,1,1,1,1,1] => 1
[2,2,1,1] => [2,1,1,1,1] => 1
[2,1,1,1,1] => [4,1,1] => 1
[1,1,1,1,1,1] => [4,2] => 0
[7] => [7] => 0
[6,1] => [3,3,1] => 3
[5,2] => [5,1,1] => 1
[5,1,1] => [5,2] => 0
[4,3] => [3,2,2] => 2
[4,2,1] => [2,2,1,1,1] => 2
[4,1,1,1] => [2,2,2,1] => 2
[3,3,1] => [6,1] => 0
[3,2,2] => [3,1,1,1,1] => 1
[3,2,1,1] => [3,2,1,1] => 1
[3,1,1,1,1] => [4,3] => 0
[2,2,2,1] => [1,1,1,1,1,1,1] => 1
[2,2,1,1,1] => [2,1,1,1,1,1] => 1
[2,1,1,1,1,1] => [4,1,1,1] => 1
[1,1,1,1,1,1,1] => [4,2,1] => 0
[8] => [4,4] => 4
[7,1] => [7,1] => 0
[6,2] => [3,3,1,1] => 3
[6,1,1] => [3,3,2] => 3
[5,3] => [5,3] => 0
[5,2,1] => [5,1,1,1] => 1
[5,1,1,1] => [5,2,1] => 0
[4,4] => [2,2,2,2] => 2
[4,3,1] => [3,2,2,1] => 2
[4,2,2] => [2,2,1,1,1,1] => 2
[4,2,1,1] => [2,2,2,1,1] => 2
[4,1,1,1,1] => [4,2,2] => 2
[3,3,2] => [6,1,1] => 1
[3,3,1,1] => [6,2] => 0
[3,2,2,1] => [3,1,1,1,1,1] => 1
[3,2,1,1,1] => [3,2,1,1,1] => 1
[3,1,1,1,1,1] => [4,3,1] => 0
[2,2,2,2] => [1,1,1,1,1,1,1,1] => 1
[2,2,2,1,1] => [2,1,1,1,1,1,1] => 1
[2,2,1,1,1,1] => [4,1,1,1,1] => 1
[2,1,1,1,1,1,1] => [4,2,1,1] => 1
[1,1,1,1,1,1,1,1] => [8] => 0
[9] => [9] => 0
[8,1] => [4,4,1] => 4
[7,2] => [7,1,1] => 1
[7,1,1] => [7,2] => 0
[6,3] => [3,3,3] => 3
[6,2,1] => [3,3,1,1,1] => 3
[6,1,1,1] => [3,3,2,1] => 3
[5,4] => [5,2,2] => 2
[5,3,1] => [5,3,1] => 0
[5,2,2] => [5,1,1,1,1] => 1
[5,2,1,1] => [5,2,1,1] => 1
[5,1,1,1,1] => [5,4] => 0
[4,4,1] => [2,2,2,2,1] => 2
[4,3,2] => [3,2,2,1,1] => 2
[4,3,1,1] => [3,2,2,2] => 2
[4,2,2,1] => [2,2,1,1,1,1,1] => 2
[4,2,1,1,1] => [2,2,2,1,1,1] => 2
[4,1,1,1,1,1] => [4,2,2,1] => 2
[3,3,3] => [6,3] => 0
[3,3,2,1] => [6,1,1,1] => 1
[3,3,1,1,1] => [6,2,1] => 0
[3,2,2,2] => [3,1,1,1,1,1,1] => 1
[3,2,2,1,1] => [3,2,1,1,1,1] => 1
[3,2,1,1,1,1] => [4,3,1,1] => 1
[3,1,1,1,1,1,1] => [4,3,2] => 0
[2,2,2,2,1] => [1,1,1,1,1,1,1,1,1] => 1
[2,2,2,1,1,1] => [2,1,1,1,1,1,1,1] => 1
[2,2,1,1,1,1,1] => [4,1,1,1,1,1] => 1
[2,1,1,1,1,1,1,1] => [4,2,1,1,1] => 1
[1,1,1,1,1,1,1,1,1] => [8,1] => 0
[10] => [5,5] => 5
[9,1] => [9,1] => 0
[8,2] => [4,4,1,1] => 4
[8,1,1] => [4,4,2] => 4
[7,3] => [7,3] => 0
>>> Load all 187 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest repeated part of a partition.
If the parts of the partition are all distinct, the value of the statistic is defined to be zero.
If the parts of the partition are all distinct, the value of the statistic is defined to be zero.
Map
Glaisher-Franklin
Description
The Glaisher-Franklin bijection on integer partitions.
This map sends the set of even part sizes, each divided by two, to the set of repeated part sizes, see [1, 3.3.1].
This map sends the set of even part sizes, each divided by two, to the set of repeated part sizes, see [1, 3.3.1].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!